首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   5篇
  国内免费   6篇
大气科学   2篇
地球物理   11篇
地质学   24篇
海洋学   3篇
天文学   3篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   2篇
  2011年   1篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
排序方式: 共有44条查询结果,搜索用时 234 毫秒
1.
2.
3.
Subarctic ecohydrological processes are changing rapidly, but detailed and integrated ecohydrological investigations are not as widespread as necessary. We introduce an integrated research catchment site (Pallas) for atmosphere, ecosystems, and ecohydrology studies in subarctic conditions in Finland that can be used for a new set of comparative catchment investigations. The Pallas site provides unique observational data and high-intensity field measurement datasets over long periods. The infrastructure for atmosphere- to landscape-scale research in ecosystem processes in a subarctic landscape has recently been complemented with detailed ecohydrological measurements. We identify three dominant processes in subarctic ecohydrology: (a) strong seasonality drives ecohydrological regimes, (b) limited dynamic storage causes rapid stream response to water inputs (snowmelt and intensive storms), and (c) hydrological state of the system regulates catchment-scale dissolved carbon dynamics and greenhouse (GHG) fluxes. Surface water and groundwater interactions play an important role in regulating catchment-scale carbon balances and ecosystem respiration within subarctic peatlands, particularly their spatial variability in the landscape. Based on our observations from Pallas, we highlight key research gaps in subarctic ecohydrology and propose several ways forward. We also demonstrate that the Pallas catchment meets the need for sustaining and pushing the boundaries of critical long-term integrated ecohydrological research in high-latitude environments.  相似文献   
4.
Diagenesis has a significant impact on reservoir quality in deeply buried formations. Sandstone units of the Shahejie Formation (Es1 Member) of Nanpu Sag, Bohai Bay Basin, East China is a typical deeply buried sandstone with large hydrocarbon accumulations. The methodology includes core observations and thin section studies, using fluorescence, scanning electron microscope (SEM), cathodoluminescence (CL), fluid inclusion and isotope and electron probing analysis as well as the numerical determination of reservoir characteristics. The sandstones consist of medium to coarse-grained, slight to moderate sorted lithic arkose and feldspathic litharenite. Porosity and permeability values range from 0.5 to 30% and 0.006 to 7000 mD, respectively. The diagenetic history reveals mixed episodes of diagenesis and deep burial followed by uplift. The main diagenetic events include compaction, cementation alteration, dissolution of unstable minerals and grain fracturing. Compaction resulted in densification and significantly reduced the primary porosity. Quartz, calcite and clay are the dominant pore-occluding cement and occur as euhedral to subhedral crystals. Alteration and dissolution of volcanic lithic fragments and pressure solution of feldspar grains were the key sources of quartz cement whereas carbonate cement is derived from an external source. Clay minerals resulted from the alteration of feldspar and volcanic lithic fragments. Porosity and permeability data predict a good inverse relationship with cementation whereas leaching of metastable grains, dissolution of cement and in some places formation of pore-lining chlorite enhanced the reservoir quality. The best reservoir is thicker sandstone bodies that are medium to coarse-grained, well-sorted sandstone with low primary ductile grains with a minor amount of calcite cement. The present study shows several diagenetic stages in the Es1 Member, but the overall reservoir quality is preserved.  相似文献   
5.
6.
This article reports on a series of small-scale, plane strain, 1 g physical model tests designed to investigate the bearing capacity and failure mechanics of end-bearing soil-cement columns formed via Deep Mixing (DM). Pre-formed soil-cement columns, 24 mm in diameter and 200 mm in length, were installed in a soft clay bed using a replacement method; the columns represented improvement area ratios, ap, of 17%, 26%, and 35% beneath a rigid foundation of width 100 mm. Particle Image Velocimetry (PIV) was implemented in conjunction with close-range photogrammetry in order to track soil displacement during loading, from which the failure mechanisms were derived. Bearing capacity performance was verified using Ultimate Limit State numerical analysis, with the results comparing favorably to the analytical static and kinematic solutions proposed by previous researchers. A new equation for bearing capacity was derived from this numerical analysis based on the improvement area ratio and cohesion ratio of the soil column and ground model.  相似文献   
7.
8.
9.
The attenuation equation for far field earthquake is important because the earthquake occurring in neighboring countries can be felt in Malaysia. In this study, a new attenuation was generated using the regression method. It was developed to calculate the peak ground acceleration (PGA) onsite (offshore platform). The database consisting of more than 150 PGAs from 9 events of earthquakes recorded by the Seismology Station in Malaysia was used to develop the relationship. In addition, attenuation relationships for subduction mechanisms from previous researchers are then compared with the newly generated ones in this research. The new attenuation equation was also validated and used to calculate the acceleration for far field earthquake in a case study of offshore platform at a Terengganu seaside. The result of PGA from the new generated attenuation relationship was in a good match with previous attenuation equations.  相似文献   
10.
研究地热储层裂隙岩体中的渗流传热过程对干热岩地热资源的开采具有重要的意义。本文以干热岩地热工程为背景,采用COMSOL Multiphysics数值模拟软件对地热储层单裂隙岩体中渗流传热机理进行了研究,并分析了流体注入速度和温度对岩体温度场的影响及其对干热岩地热工程的影响。研究发现流体参数对岩体温度场的影响主要体现在两个方面:一方面是对岩体温度场受扰动区域以及幅度的影响,另一方面是对岩体温度场达到稳态所需要时间的影响。流体注入速度的提升会降低系统的寿命和寿命期的出口法向总热量值,当考虑出口法向总热通量时,存在最佳流体注入速度,本研究中最佳流体注入速度为0.011m/s。流体注入温度的提升会增加系统的寿命和系统的出口法向总热通量和总热量。研究为干热岩自热资源的开发与利用提供了理论依据,为工程运行参数的设计提供了参考依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号