首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
测绘学   1篇
大气科学   5篇
地球物理   4篇
地质学   8篇
天文学   4篇
自然地理   4篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2007年   2篇
  1998年   1篇
  1994年   2篇
  1993年   3篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Surfaces fluxes, turbulent kinetic energy and Flux Richardson number are calculated for three typical sea breeze days characterizing three types of sea breeze onset at an inland station Kharagpur (22°21 N, 87°19 E), 80 km inland, one of the sites for MONTBLEX (MONsoon Trough Boundary Layer EXperiment), in India. The sea breeze onset is associated with a decrease in momentum and heat fluxes and an increase in moisture flux. The turbulent kinetic energy shows quite a significant value even in the late afternoon. The surface layer becomes nearly stable even before sunset, due to the passage of the sea breeze.  相似文献   
2.
The implicit nonlinear normal mode initialization (INMI) is applied to a tropical limited area shallow water modelin spherical coordinates.The boundary condition for the INMI scheme is based on the boundary formulation of themodel.The INMI scheme is found to be very efficient in suppressing spurious gravity wave oscillation and providing awell balanced initial data set for the model.The INMI scheme involves solving a number of elliptic type equations withvarying complexity.and hence an efficient numerical technique is required for solving such equations.In order to makeINMI computationally more attractive,we are employing the multigrid method for solving all the elliptic type equationsin the INMI scheme.The numerical procedures for the development of such multigrid solvers are briefly described.  相似文献   
3.
Using data from the MONsoon Trough Boundary Layer EXperiment (MONTBLEX), the thermodynamic structure of the atmospheric boundary layer (ABL) under the influence of a monsoon depression has been studied. When the depression was in the vicinity of the observing station, the soundings showed an increase in potential temperature, the sub-cloud layer was well mixed, the wind speed increased to 35 m/s, and the monsoon boundary layer was convectively more unstable at night than in the daytime. Cloud-top processes, which lead to an apparent breakdown of the boundary layer, seem to explain this.  相似文献   
4.
The electron production rates in the night-time D-region arising from the transit of strong celestial X-ray sources Sco X-1, Tau X-1 and Galactic Center are estimated and compared with the ambient electron production rates resulting from other known stable agencies. Using the experimentally measured values of the night-time electron densities, the number of additional electrons/cc expected from the passage of these sources is computed. For the 164 kHz transmission from Tashkent, received at Ahmedabad, the associated enhancement in the attenuation is calculated using the full wave admittance technique of Barron and Budden. Reasonable agreement is shown to exist between the calculated values of the attenuation and those of direct observations.  相似文献   
5.
6.
Application of geostatistics in estimating recoverable reserves of beach sand deposit is rare. This paper made an attempt to estimate local recoverable reserves using disjunctive kriging and discrete Gaussian model considering support and information effects for a beach sand deposit located in the eastern part of India. The dependence of different selective mining unit (SMU) sizes and different production sampling strategies on the estimated tonnage, metal quantity, and the ore tonnage versus metal quantity relationships has been examined. The results of the study show that nonlinear geostatistics should be used for more precise assessment of the grade, ore tonnage, and metal quantity and their relationships, which are necessary for recoverable reserve estimation. In selective mining operation, both support and information effects have significant influence on recoverable reserve. Recoverable reserve estimation based on SMU involves estimating grade distributions of mining unit with much bigger support than the available drill core sample data. Information effect comes into picture from the real scenario where the actual grades of the blocks remain unknown even during mining. At the mining stage, discrimination of ore and waste blocks is carried out based on estimated grades of the production samples and it is likely that the blocks might be misclassified as either ore or waste and thus sent to wrong destination. Information effect modeling makes the estimation more reliable by taking care of misclassification.  相似文献   
7.
In the present study an analytical procedure based on finite element technique is proposed to investigate the influence of vertical load on deflection and bending moment of a laterally loaded pile embedded in liquefiable soil, subjected to permanent ground displacement. The degradation of subgrade modulus due to soil liquefaction and effect of nonlinearity are also considered. A free headed vertical concrete elastic nonyielding pile with a floating tip subjected to vertical compressive loading, lateral load, and permanent ground displacement due to earthquake motions, in liquefiable soil underlain by nonliquefiable stratum, is considered. The input seismic motions, having varying range of ground motion parameters, considered here include 1989 Loma Gilroy, 1995 Kobe, 2001 Bhuj, and 2011 Sikkim motions. It is calculated that maximum bending moment occurred at the interface of liquefiable and nonliquefiable soil layers and when thickness of liquefiable soil layer is around 60% of total pile length. Maximum bending moment of 1210 kNm and pile head deflection of 110 cm is observed because of 1995 Kobe motion, while 2001 Bhuj and 2011 Sikkim motions amplify the pile head deflection by 14.2 and 14.4 times and bending moment approximately by 4 times, when compared to nonliquefiable soil. Further, the presence of inertial load at the pile head increases bending moment and deflection by approximately 52% when subjected to 1995 Kobe motion. Thus, it is necessary to have a proper assessment of both kinematic and inertial interactions due to free field seismic motions and vertical loads for evaluating pile response in liquefiable soil.  相似文献   
8.
Interferometric Synthetic Aperture Radar (InSAR), nowadays, is a precise technique for monitoring and detecting ground deformation at a millimetric level over large areas using multi-temporal SAR images. Persistent Scatterer Interferometric SAR (PSInSAR), an advanced version of InSAR, is an effective tool for measuring ground deformation using temporally stable reference points or persistent scatterers. We have applied both PSInSAR and Small Baseline Subset (SBAS) methods, based on the spatial correlation of interferometric phase, to estimate the ground deformation and time-series analysis. In this study, we select Las Vegas, Nevada, USA as our test area to detect the ground deformation along satellite line-of-sight (LOS) during November 1992–September 2000 using 44 C-band SAR images of the European Remote Sensing (ERS-1 and ERS-2) satellites. We observe the ground displacement rate of Las Vegas is in the range of ?19 to 8 mm/year in the same period. We also cross-compare PSInSAR and SBAS using mean LOS velocity and time-series. The comparison shows a correlation coefficient of 0.9467 in the case of mean LOS velocity. Along this study, we validate the ground deformation results from the satellite with the ground water depth of Las Vegas using time-series analysis, and the InSAR measurements show similar patterns with ground water data.  相似文献   
9.

The detrimental effects of an earthquake are strongly influenced by the response of soils subjected to dynamic loading. The behavior of soils under dynamic loading is governed by the dynamic soil properties such as shear wave velocity, damping characteristics and shear modulus. Worldwide, it is a common practice to obtain shear wave velocity (V s in m/s) using the correlation with field standard penetration test (SPT) N values in the absence of sophisticated dynamic field test data. In this paper, a similar but modified advanced approach has been proposed for a major metro city of eastern India, i.e., Kolkata city (latitudes 22°20′N–23°00′N and longitudes 88°04′E–88°33′E), to obtain shear wave velocity profile and soil site classification using regression and sensitivity analyses. Extensive geotechnical borehole data from 434 boreholes located across 75 sites in the city area of 185 km2 and laboratory test data providing information on the thickness of subsoil strata, SPT N values, consistency indices and percentage of fines are collected and analyzed thoroughly. A correlation between shear wave velocity (V s) and SPT N value for various soil profiles of Kolkata city has been established by using power model of nonlinear regression analysis and compared with existing correlations for other Indian cities. The present correlations, having regression coefficients (R 2) in excess of 0.96, indicated good prediction capability. Sensitivity analysis predicts that significant influence of soil type exists in determining V s values, for example, typical silty sand shows 30.4 % increase in magnitude of V s as compared to silt of Kolkata city. Moreover, the soil site classification shows Class D and Class E category of soil that exists typically in Kolkata city as per NEHRP (Recommended provisions for seismic regulations for new buildings and other structures—Part 1: Provisions. Prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency (Report FEMA 450), Washington, DC, 2003) guidelines and thereby highlighting the seismic vulnerability of the city. The results presented in this study can be utilized for seismic microzonation, ground response analysis and hazard assessment for Kolkata city.

  相似文献   
10.
The huge piles of overburden comprising of fragmented rocks and loose soil are dumped within the leasehold area causing serious environmental problems in view of occasional sliding and the risks of miner’s life. The continuum-based numerical approach ignores the discrete nature of the geo-materials found in external overburden dump, in terms of both composition and interactions. Engineering mechanics in the discontinuum regime has been utilized to overcome the mentioned limitations. The distinct element method is employed to characterize the overburden dump geometry and the associated physical behaviour of the dump mass for seismic loads. The study discussed about the earthquake vibration responses and assessed the internal dynamics of the dump mass system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号