首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   12篇
  国内免费   3篇
测绘学   6篇
大气科学   12篇
地球物理   58篇
地质学   62篇
海洋学   40篇
天文学   57篇
综合类   4篇
自然地理   19篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   10篇
  2010年   16篇
  2009年   18篇
  2008年   17篇
  2007年   14篇
  2006年   13篇
  2005年   10篇
  2004年   8篇
  2003年   7篇
  2002年   10篇
  2001年   8篇
  2000年   8篇
  1999年   11篇
  1998年   7篇
  1997年   4篇
  1995年   4篇
  1994年   9篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1977年   1篇
  1971年   1篇
  1955年   1篇
排序方式: 共有258条查询结果,搜索用时 15 毫秒
1.
The strength of the vertical mixing in the bottom mixed layer near the continental shelf break in the East China Sea was directly measured with the Micro-Scale Profiler (MSP). It has been shown that there is no significant statistical relation between the turbulent energy dissipation and the degree of the stratificationN 2. It seems that the vigorous turbulence occurs not constantly but intermittently in the bottom mixed layer so that a large variation of is found depending on the time. In contrast to , the coefficient of the vertical eddy diffusivityK z is mostly determined byN such thatK z is large in the bottom mixed layer and small in the thermocline. Large value ofK z in the bottom mixed layer is also found in the time series ofK z estimated in terms of Richardson number calculated from the data obtained with electromagnetic current meters. The value ofK z more than 10 cm2s–1 frequently occur in the layer of 20–25 m thick just above the bottom.  相似文献   
2.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
We have investigated the three-dimensional Lagrangian motion of water particles related with tidal exchange between two basins with a constant depth connected through a narrow strait and the effects of density stratification on the exchange processes by tracking a number of the labeled particles. Tide-induced transient eddies (TITEs), which are similar to those in two-dimensional basin, are generated behind the headlands. Upwelling appears around the center of the eddy and sinking around the boundary. When the basins are filled with homogeneous water, a pair of vortices are produced in the vertical cross section of the strait due to bottom stress, with upwellings along the side walls of the strait and sinking in the center of the strait. These circulations form the horizontally convergent field in the cross-strait direction in the upper layers while the horizontal divergence takes place in the bottom layer. These vertical water-motions produce the three-dimensional distribution of velocity shear and phase lag of the tidal current around the strait, and the Lagrangian drifts of water particles become large. As a result, water exchange through the strait is greatly enhanced: The water exchange rate reaches 94.1% which is much larger than that obtained in the vertically integrated two-dimensional model. When the basins are stratified, the stable stratification suppresses the vertical motion so that a pair of vertical vortices are confined in the lower layers. This leads to a decrease in the exchange rate, down to 88.6%. Our numerical results show that the three-dimensional structure of tidal currents should be taken into account in tidal exchange through a narrow strait.  相似文献   
4.
The author reviews his study on generation mechanism of a shallow sea front and its variabilities awarded the Okada Prize of the Oceanographical Society of Japan for 1991. A new physical model is proposed for frontogenesis (nonhydrostatic model) in a shallow sea such as the Kii Channel during winter. This model retains the vertical acceleration term in momentum equation to simulate properly phenomena of a large aspect-ratio in the frontal region, such as gravitational convection induced by surface cooling. Numerical experiments are carried out to examine the validity of the model by using vertically two-dimensional model basin. Gravitational convection induced in the frontal region strengthens the horizontal convergence to form a remarkable front comparable to the observed one and that this effect of convection surpasses that of a tenfold cooling rate in a usual model adopting the hydrostatic approximation. It is also found that sharpness of front largely depends on horizontal eddy viscosity (diffusivity). Water exchange process caused by fluctuations of front is examined by tracking numerous labeled particles. Gravitational convection also plays an important role in this process by producing a large Lagrangian drift in the frontal region.  相似文献   
5.
Hybrid vibration experiments with a bridge foundation system model   总被引:3,自引:0,他引:3  
In order to improve seismic design technology of bridges, it is necessary to evaluate the vibration characteristics of a bridge–soil system that consists of soil, foundation structure, pier and superstructure. However, there have been few experimental studies on seismic behavior of bridge–soil system. In this paper, we conducted the hybrid vibration experiment on seismic behavior of bridge–soil system, and examined the applicability of hybrid vibration experiment to study seismic response of bridge–soil system. Based on the experiment results, seismic response of bridge was quantitatively studied.  相似文献   
6.
Shaking table tests were conducted by means of a large-scale laminar box with 4 m in length, 2 m in width and 2 m in height in order to investigate behavior of a soil-pile-superstructure system in liquefiable ground. A model two-storey structure, supported by a pile group, was set in a saturated sand deposit, and subjected to a sinusoidal base motion with increasing amplitude. Discussions are focused on the transient behavior until soil liquefaction occurs. Main interests are characteristics of springs used in a sway-rocking model and a multi-freedom lumped mass (MFLM) model that are frequently used in soil–pile interaction analysis. The spring constant in the sway-rocking model is represented by restoring force characteristics at the pile head, and that in the MFLM system is represented by an interaction spring connecting the pile to the free field. The transient state prior to soil liquefaction is shown to be important in the design of a pile because dynamic earth pressure shows peak response in this state. The reduction of the stiffness due to excess porewater generation and strain dependent nonlinear behavior is evaluated.  相似文献   
7.
8.
During the 2000 activity of Miyake-jima volcano, Japan, we detected long period seismic signals with initial pulse widths of 1-2 s, accompanied by infrasonic pulses with almost the same pulse widths. The seismic signals were observed from 13 July 2000, a day before the second summit eruption. The occurrences of the seismic signals were intermittent with a gradual increase in their magnitudes and numbers building toward a significant explosive eruption on 18 August. After the eruption, the seismic and infrasonic events ceased. The results of a waveform inversion show that the initial motions were excited by an isotropic inflation source beneath the south edge of the caldera at a depth of 1.4 km. On the other hand, the sources of the infrasonic pulses were located in the summit caldera area. The times at which the infrasonic pulses were emitted at the surface were delayed by about 3 s from the origin times of the seismic events. It is suggested that small isotropic inflations excited seismic waves in the crust and simultaneously caused acoustic waves that traveled in the conduit and produced infrasonic pulses at the crater bottom. Considering the observed time differences and gas temperatures emitted from the vent, the conduit should have been filled with vapor mixed with SO2 gas and volcanic ash. The change of the time differences between the seismic and infrasonic signals suggests that the seismic source became shallower within half a day before the August 18 explosive eruption. We interpret the source process as a fragmentation process of magma in which gas bubbles burst and quickly released part of the pressure that had been sustained by the tensional strength of magma.  相似文献   
9.
We report the first finding of diamond and moissanite in metasedimentary crustal rocks of Pohorje Mountains (Slovenia) in the Austroalpine ultrahigh‐pressure (UHP) metamorphic terrane of the Eastern Alps. Microscopic observations and Raman spectroscopy show that diamond occurs in situ as inclusions in garnet, being heterogeneously distributed. Under the optical microscope, diamond‐bearing inclusions are of cuboidal to rounded shape and of pinkish, yellow to brownish colour. The Raman spectra of the investigated diamond show a sharp, first order peak of sp3‐bonded carbon, in most cases centred between 1332 and 1330 cm?1, with a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered graphitic (sp2‐bonded) carbon. Detailed observations show that diamond occurs either as a monomineralic, single‐crystal inclusion or it is associated with SiC (moissanite), CO2 and CH4 in polyphase inclusions. This rare record of diamond occurring with moissanite as fluid‐inclusion daughter minerals implies the crystallization of diamond and moissanite from a supercritical fluid at reducing conditions. Thermodynamic modelling suggests that diamond‐bearing gneisses attained P–T conditions of ≥3.5 GPa and 800–850 °C, similar to eclogites and garnet peridotites. We argue that diamond formed when carbonaceous sediment underwent UHP metamorphism at mantle depth exceeding 100 km during continental subduction in the Late Cretaceous (c. 95–92 Ma). The finding of diamond confirms UHP metamorphism in the Pohorje Mountains, the most deeply subducted part of Austroalpine units.  相似文献   
10.
We performed shock recovery experiments on an olivine‐phyric basalt at shock pressures of 22.2–48.5 GPa to compare with shock features in Martian meteorites (RBT 04261 and NWA 1950). Highly shocked olivine in the recovered basalt at 39.5 and 48.5 GPa shows shock‐induced planar deformation features (PDFs) composed of abundant streaks of defects. Similar PDFs were observed in olivine in RBT 04261 and NWA 1950 while those in NWA 1950 were composed of amorphous lamellae. Based on the present results and previous studies, the width and the abundance of lamellar fine‐structures increased with raising shock pressure. Therefore, these features could be used as shock pressure indicators while the estimated pressures may be lower limits due to no information of temperature dependence. For Martian meteorites that experienced heavy shocks, the minimum peak shock pressures of RBT 04261 and NWA 1950 are estimated to be 39.5–48.5 GPa and 48.5–56 GPa, respectively, which are found consistent with those estimated by postshock temperatures expected by the presence of brown olivine. We also investigated shock‐recovered basalts preheated at 750 and 800 °C in order to check the temperature effects on shock features. The results indicate a reduction in vitrifying pressure of plagioclase and a pressure increase for PDFs formation in olivine. Further temperature‐controlled shock recovery experiments will provide us better constraints to understand and to characterize various features found in natural shock events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号