首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
测绘学   6篇
地球物理   1篇
天文学   2篇
自然地理   2篇
  2011年   1篇
  2010年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1991年   2篇
排序方式: 共有11条查询结果,搜索用时 515 毫秒
1.
The polar motion prediction is computed as a least-squares extrapolation of the polar motion data. The least-squares model consists of a Chandler circle with constant or variable amplitude, annual and semiannual ellipses, and a bias. The model with constant amplitude of the Chandler oscillation is fit to the last three years of polar motion data and the model with variable amplitude of the Chandler oscillation is fit to the whole time series ranging from 1973.0 to 2001.1. The variable amplitude of the Chandler oscillation is modeled from the envelope of the Chandler oscillation filtered by the Fourier transform band pass filter from the long-term IERS EOPC01 polar motion series. The accuracy of the polar motion prediction depends mostly on the phase variation of the annual oscillation, which is treated as a constant in the least-squares adjustment. There were two significant changes of the annual oscillation phase of the order of 30° before the two El Niño events in 1982/83 and 1997/98.  相似文献   
2.
In the 2006?C2009 triennium, the International Astronomical Union (IAU) Working Group on Numerical Standards for Fundamental Astronomy determined a list of Current Best Estimates (CBEs). The IAU 2009 Resolution B2 adopted these CBEs as the IAU (2009) System of Astronomical Constants. Additional work continues to define the process of updating the CBEs and creating a standard electronic document.  相似文献   
3.
Improved UT1 predictions through low-latency VLBI observations   总被引:2,自引:2,他引:0  
The quality of predictions of Earth orientation parameters (EOPs) in general, and of Universal Time (UT1) in particular, depends strongly on the time delay between the last observation available and the first prediction. Since 30 September 2007 (MJD 54373), the latency of UT1 results from a subset of single baseline VLBI observations running once per week (Mondays) has been decreased from 2 to 3 days to about 8 h. This was achieved by transmitting the raw VLBI data of 1-h duration from the observing sites in Tsukuba (Japan), Wettzell (Germany) and Ny-Ålesund (Norway) to the correlator of the Max-Planck-Institute for Radio Astronomy and the German Federal Agency of Cartography and Geodesy at Bonn, Germany, by high-speed Internet connections (e-Transfer). The reduced latency of the observations has improved the accuracy of the combined International Earth Rotation and Reference Systems Service (IERS) Rapid Service/Prediction Center (RS/PC) UT1-UTC solution by roughly 50% on the days when the data are available. Because this combination is an input to the UT1-UTC prediction process, the improved latency is also responsible for a roughly 21% improvement in the accuracy of short-term IERS RS/PC UT1-UTC predictions on the days where the data are available.  相似文献   
4.
5.
6.
 Autocovariance prediction has been applied to attempt to improve polar motion and UT1-UTC predictions. The predicted polar motion is the sum of the least-squares extrapolation model based on the Chandler circle, annual and semiannual ellipses, and a bias fit to the past 3 years of observations and the autocovariance prediction of these extrapolation residuals computed after subtraction of this model from pole coordinate data. This prediction method has been applied also to the UT1-UTC data, from which all known predictable effects were removed, but the prediction error has not been reduced with respect to the error of the current prediction model. However, the results show the possibility of decreasing polar motion prediction errors by about 50 for different prediction lengths from 50 to 200 days with respect to the errors of the current prediction model. Because of irregular variations in polar motion and UT1-UTC, the accuracy of the autocovariance prediction does depend on the epoch of the prediction. To explain irregular variations in x, y pole coordinate data, time-variable spectra of the equatorial components of the effective atmospheric angular momentum, determined by the National Center for Environmental Prediction, were computed. These time-variable spectra maxima for oscillations with periods of 100–140 days, which occurred in 1985, 1988, and 1990 could be responsible for excitation of the irregular short-period variations in pole coordinate data. Additionally, time-variable coherence between geodetic and atmospheric excitation function was computed, and the coherence maxima coincide also with the greatest irregular variations in polar motion extrapolation residuals. Received: 22 October 1996 / Accepted: 16 September 1997  相似文献   
7.
Prediction of Earth orientation   总被引:1,自引:0,他引:1  
Summary The method for predicting x, y, and UT1-UTC as conceived and implemented by the Subbureau for Rapid Service and Prediction of the International Earth Rotation Service (IERS) is shown. For polar motion, the method is an extrapolation of an annual ellipse and Chandler circle. The method for UT1-UTC involves a simple differencing technique.  相似文献   
8.
Precise astrometric observations show that significant systematic differences of the order of 10 milliarcseconds (mas) exist between the observed position of the celestial pole in the International Celestial Reference Frame (ICRF) and the position determined using the International Astronomical Union (IAU) 1976 Precession (Lieske et al., 1977) and the IAU 1980 Nutation Theory (Seidelmann, 1982). The International Earth Rotation Service routinely publishes these 'celestial pole offsets', and the IERS Conventions (McCarthy, 1996) recommends a procedure to account for these errors. The IAU, at its General Assembly in 2000, adopted a new precession/nutation model (Mathews et al., 2002). This model, designated IAU2000A, which includes nearly 1400 terms, provides the direction of the celestial pole in the ICRF with an accuracy of ±0.1 mas. Users requiring accuracy no better than 1 mas, however, may not require the full model, particularly if computational time or storage are issues. Consequently, the IAU also adopted an abridged procedure designated IAU2000B to model the celestial pole motion with an accuracy that does not result in a difference greater than 1 mas with respect to that of the IAU2000A model. That IAU2000B model, presented here, is shown to have the required accuracy for a period of more than 50 years from 1995 to 2050.  相似文献   
9.
Several novel features are examined to determine their effectiveness in separating buildings from trees in airborne laser swath mapping (ALSM) data. New one- and two-dimensional distance measures are created to quantify the separability of the classes using the different features. Several features involving the intensity of the laser returns were found to be highly effective at separating the classes. The new distance measure provides insight into what makes a good/bad feature when discriminating between classes. It also lays the groundwork for future classification of ALSM data by providing a systematic method of ranking features to be used for classification.  相似文献   
10.
Recent Improvements to IERS Bulletin A Combination and Prediction   总被引:4,自引:0,他引:4  
Driven by a need for increased accuracy in real-time Earth orientation parameters (EOPs), the Bulletin A (Rapid Servce and Predictions) of the International Earth Rotation Service (IERS) has recently made several major changes to its combination and prediction procedures. Changes to the process ob combining multi-technique results include creation of a daily Bulletin A updata, inclusion of several new data sets, and use of polar motion rantes for the latest epoch. Notably, the contributions from GPS observations have grown steadily in significance, both for polar motion and Universal Time (UT1). The prediction procedure has, in turn, benefited from these changes as well as improvements to the polar motion prediction model. As a result, demanding real-time applications, such as for satellite orbit extrapolations should observe a major improvement in the accuracy of our real-time EOP products. All results, together with supporting and diagnostic information, are available at the website http://maia.usno.navy.mil. The maximum EOP errors (root-mean-squared sense) that a real-time user would experience using the latest available update of Bulletin A are currently estimated to be ∼0.9 milliarcseconds (mas) for polar motion and ∼0.15 milliseconds (ms) for UT1-UTC. The data latency (the lag since the most recent observations) for EOP predictions need not exceed ∼41 hours for users who avail themselves of the daily updates. Over the past four years, the accuracy for real-time applications has improved by nearly a factor of 4 in polar motion and a factor of 10 in UT1. This is primarily due to the large reduction in data latency, which in turn is mostly possible due to the Rapid product delivery of the International GPS Service (IGS) (see Mireault et al, 1999). ? 2001 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号