首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   1篇
  国内免费   2篇
测绘学   8篇
大气科学   7篇
地球物理   7篇
地质学   19篇
海洋学   8篇
天文学   3篇
综合类   3篇
自然地理   7篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   8篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   11篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1997年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1981年   2篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
A number of fine-grained sericite bearing pelitic, schistose lithologies occur along the Archean (Banded Gneiss Complex)-Proterozoic (Aravalli Supergroup) contact (APC) in the Udaipur valley in NW Indian craton. These Al-rich lithologies (subsequently metamorphosed) have been described as ‘paleosols’, developed over a 3.3 Ga old Archean gneissic basement and are overlain by Paleoproterozoic Aravalli quartzite. The paleosol was developed between 2.5 and 2.1, coincident with the globally recognized Great Oxidation Event (GOE). In previous studies these paleosol sections were interpreted to have developed under reducing environment, however, the finding of a ‘ferricrete’ zone in the upper part of Tulsi Namla section (east of Udaipur) during the present study (in addition to earlier reported lithologies) has led to an alternative suggestion of oxygen-rich conditions during paleosol development. The Tulsi Namla paleosol section shows all the features characteristic of a complete paleosol section described from other Archean cratons. The paleosol includes sericite schist with kyanite as the prevalent Al-silicate in the lower part of profile while chloritoid and Fe-oxides typify the Fe-rich upper part. Alumina has remained immobile during the weathering process while Fe and Mn show a decrease in the lower part of the section and an abrupt rise in the upper part, in the ferricrete zone. The field and geochemical data indicate that the Tulsi Namla section is an in situ weathering profile and at least the upper part shows evidence of oxidizing conditions.  相似文献   
2.
3.
The spatial distribution of trace gases exhibit large spatial heterogeneity over the Indian region with an elevated pollution loading over densely populated Gangetic Plains (IGP). The contending role and importance of anthropogenic emissions and meteorology in deciding the trace gases level and distribution over Indian region, however, is poorly investigated. In this paper, we use an online regional chemistry transport model (WRF/Chem) to simulate the spatial distribution of trace gases over Indian region during one representative month of only three meteorological seasons namely winter, spring/summer and monsoon. The base simulation, using anthropogenic emissions from SEAC4RS inventory, is used to simulate the general meteorological conditions and the realistic spatial distribution of trace gases. A sensitivity simulation is conducted after removing the spatial heterogeneity in the anthropogenic emissions, i.e., with spatially uniform emissions to decouple the role of anthropogenic emissions and meteorology and their role in controlling the distribution of trace gases over India. The concentration levels of Ozone, CO, SO2 and NO2 were found to be lower over IGP when the emissions are uniform over India. A comparison of the base run with the sensitivity run highlights that meteorology plays a dominant role in controlling the spatial distribution of relatively longer-lived species like CO and secondary species like Ozone while short-lived species like NOX and SO2 are predominantly controlled by the spatial variability in anthropogenic emissions over the Indian region.  相似文献   
4.
Haryana plain is the drainage divide between the Ganga plain in the east and the Indus plain in the west. Being a part of the Himalayan foreland, its geomorphology, sedimentation processes, and tectonism are broadly controlled by the Himalayan tectonics. Soil and geomorphological mapping in Haryana plain bring out geomorphic features such as paleochannels, various active drainage patterns, and landforms such as old fluvial plains, floodplains, piedmonts, pediments, terminal fans, and eolian plains. Based on the degree of soil development, and Optical stimulated luminescence (OSL) ages, the soil-geomorphic units were grouped into six members (QIMS-I to VI) (Quaternary Indus Morphostratigraphic Sequence) of a morphostratigraphic sequence: QIMS-VI 9.86–5.38 Ka, QIMS-V 5.38–4.45 Ka, QIMS-IV 4.45–3.60 Ka, QIMS-III 3.60–2.91 Ka, QIMS-II <?2.91–1.52 Ka, and QIMS-I <?1.52 Ka. OSL chronology of different geomorphic features suggests six episodes of tectono-geomorphic evolution in the region since 10 Ka. Neotectonic features such as nine faults, two lineaments, and five fault-bounded tectonic blocks have been identified. Independent tilting and sagging of the blocks in response to neotectonics have resulted in modification of landforms, depositional processes, and hydro-geomorphology of the region. Major rivers like the Yamuna, the Ghaggar, and the Sutlej show different episodes of shifting of their courses. Lineament controlled few extinct channels have been recorded between 20 and 25 m depth below the surface in the ground-penetrating radar (GPR) profiles. These buried channels are aligned along the paleo-course of the Lost Saraswati River interpreted from the existing literature and hence are considered as the course of the lost river. Seven terminal fans have been formed on the downthrown blocks of the associated faults. The Markanda Terminal Fan, the first of such features described, is indeed a splay terminal fan and was formed by a splay distributary system of the Markanda River. Association of three terminal fans of different ages with the Karnal fault indicates the segment-wise development of the fault from west to east. Also, comparison with other such studies in the Ganga plain to further east suggests that the terminal fans formed by streams with distributary drainage pattern occur only in semiarid regions as in the present area and thus are indicators of semiarid climate/paleoclimate. Though the whole region is tectonically active, the region between the Rohtak fault and Hisar fault is most active at present signified by the concentration of earthquake epicenters.  相似文献   
5.
In situ measurements of near-surface ozone (\(\hbox {O}_{3})\), carbon monoxide (CO), and methane (\(\hbox {CH}_{4})\) were carried out over the Bay of Bengal (BoB) as a part of the Continental Tropical Convergence Zone (CTCZ) campaign during the summer monsoon season of 2009. \(\hbox {O}_{3}\), CO and \(\hbox {CH}_{4}\) mixing ratios varied in the ranges of 8–54 ppbv, 50–200 ppbv and 1.57–2.15 ppmv, respectively during 16 July–17 August 2009. The spatial distribution of mean tropospheric \(\hbox {O}_{3}\) from satellite retrievals is found to be similar to that in surface \(\hbox {O}_{3}\) observations, with higher levels over coastal and northern BoB as compared to central BoB. The comparison of in situ measurements with the Monitoring Atmospheric Composition & Climate (MACC) global reanalysis shows that MACC simulations reproduce the observations with small mean biases of 1.6 ppbv, –2.6 ppbv and 0.07 ppmv for \(\hbox {O}_{3}\), CO and \(\hbox {CH}_{4}\), respectively. The analysis of diurnal variation of \(\hbox {O}_{3}\) based on observations and the simulations from Weather Research and Forecasting coupled with Chemistry (WRF-Chem) at a stationary point over the BoB did not show a net photochemical build up during daytime. Satellite retrievals show limitations in capturing \(\hbox {CH}_{4}\) variations as measured by in situ sample analysis highlighting the need of more shipborne in situ measurements of trace gases over this region during monsoon.  相似文献   
6.
Recent results on cosmic ray interactions in lunar samples and meteorites resulting in production of stable and radionuclides, particle tracks and thermoluminescence are reviewed. A critical examination of26A1 depth profiles in lunar rocks and soil cores, together with particle track data, enables us to determine the long term average fluxes of energetic solar protons (>10 MeV) which can be represented by (J s,R o)=(125, 125). The lunar rock data indicate that this flux has remained constant for 5×105 to 2×106 years. Production rates of stable and radionuclides produced by galactic cosmic rays is given as a function of size and depth of the meteoroid. Radionuclide (53Mn,28Al) depth profiles in meteorite cores, whose preatmospheric depths are deduced from track density profiles are used to develop a general procedure for calculating isotope production rates as a function of meteoroid size. Based on the track density and22Ne/21Ne production rates, a criterion is developed to identify meteorites with multiple exposure history.22Ne/21Ne ratio <1·06 is usually indicative of deep shielded exposure. An examination of the available data suggests that the frequency of meteorites with multiple exposure history is high, at least 15% for LL, 27% for L and 31% for H chondrites. The epi-thermal and the thermal neutron density profiles in different meteorites are deduced from60Co and track density data in Dhajala, Kirin and Allende chondrites. The data show that the production profile depends sensitively on the size and the chemical composition of the meteoroid. Cosmic ray-induced thermoluminescence in meteorites of known preatmospheric sizes has been measured which indicates that its production profile is nearly flat and insensitive to the size of the meteoroid. Some new possibilities in studying cosmic ray implanted radionuclides in meteorites and lunar samples using resonance ionisation spectroscopy are discussed.  相似文献   
7.
GPS radio occultation(GPS RO) method,an active satellite-to-satellite remote sensing technique,is capable of producing accurate,all-weather,round the clock,global refractive index,density,pressure,and temperature profiles of the troposphere and stratosphere.This study presents planetary-scale equatorially trapped Kelvin waves in temperature profiles retrieved using COSMIC(Constellation Observing System for Meteorology,Ionosphere,and Climate) satellites during 2006-2009 and their interactions with background atmospheric conditions.It is found that the Kelvin waves are not only associated with wave periods of higher than 10 days(slow Kelvin waves) with higher zonal wave numbers(either 1 or 2),but also possessing downward phase progression,giving evidence that the source regions of them are located at lower altitudes.A thorough verification of outgoing longwave radiation(OLR) reveals that deep convection activity has developed regularly over the Indonesian region,suggesting that the Kelvin waves are driven by the convective activity.The derived Kelvin waves show enhanced(diminished) tendencies during westward(eastward) phase of the quasi-biennial oscillation(QBO) in zonal winds,implying a mutual relation between both of them.The El Nino and Southern Oscillation(ENSO) below 18 km and the QBO features between 18 and 27km in temperature profiles are observed during May 2006-May 2010 with the help of an adaptive data analysis technique known as Hilbert Huang Transform(HHT).Further,temperature anomalies computed using COSMIC retrieved temperatures are critically evaluated during different phases of ENSO,which has revealed interesting results and are discussed in light of available literature.  相似文献   
8.
In this paper magnetic property of the Delhi topsoil has been used to characterize the potentially polluted areas in terms of magnetic minerals and grain (Magnetic Domain) concentration as a factor of toxic metals and other mutagenic pollutant concentration. The Saturation magnetisation (Ms) and Saturation remanence (Mrs) has been taken as proxy for ferrimagnetic mineral concentration. However, delineation of anthropogenic magnetic fraction from lithogenic (geogenic) magnetic fraction has been done by the paramagnetic/diamagnetic contribution of soil with the fact that the fresh soil contains higher paramagnetic and diamagnetic minerals than polluted. Predominantly, the topsoils of Delhi are dominated with ferrimagnetic minerals (Magnetite and Maghemite phase). Significantly the industrial areas contain highest concentration of the ferrimagnetic minerals with negligible paramagnetic/diamagnetic fraction which leads to anthropogenic contribution. Heavy traffic and densely populated areas of the Delhi exhibit moderate to low soil pollution while green areas show lowest with higher paramagnetic/diamagnetic contribution. The soils in Delhi are dominated with Pseudo-Single Domain (PSD) magnetic grain, though the industrial areas in Delhi show coarser Multidomain (MD) grains in comparison to Stable Single Domain (SSD) in forest areas. Our study reveals that the fine grain particle does not show significant link with higher concentration of ferrimagnetic minerals at least in soils. The presence of the lithogenic magnetite crystal in the forest soil and anthropogenically produced spherules in industrial areas and higher concentration of the heavy metal in Delhi soil strengthen our findings.  相似文献   
9.
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
10.
甘达基河流域(Gandaki River Basin,GRB)是喜马拉雅中部地区的一部分,该地区栖息着许多珍稀的野生动物。由于气候和人类活动的影响,许多珍稀保护物种的生境处于危险之中。本研究基于最大熵(MaxEnt)模型,运用生物气候、土地覆被和DEM数据,分析各环境要素对棕尾虹雉(Lophophorusimpejanus)的生境适宜性的影响,评估棕尾虹雉现在状况和未来栖息地分布的变化。研究表明,目前棕尾虹雉的高度适宜栖息地面积约为749 km^2,主要分布在流域北部、东部和西部,尤其是郎塘国家公园、马纳斯卢峰自然保护区和安纳布尔纳峰自然保护区等保护区内。到2050年,棕尾虹雉的高度适宜栖息地面积将减少至561 km^2,主要在流域北部和西北部(即Chhyo,Tatopani,Humde和Chame地区)。未来环境变化的模拟表明,由于适宜栖息地面积的减少,棕尾虹雉面临的生存风险将增加。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号