首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
大气科学   2篇
地球物理   6篇
地质学   4篇
天文学   10篇
  2020年   2篇
  2018年   3篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
2.
Various reanalyses have been utilized in numerous climate related researches around the globe, however, there exists considerable biasedness in these products, especially in precipitation and temperature data. The ability of these reanalysis products to simulate the precipitation and temperature patterns is observed to be satisfactory at global scale, while it differs significantly at regional scale, especially over regions of high spatio-temporal heterogeneity such as India. Therefore, it is essential to evaluate the applicability and robustness of reanalyses in climate related research. The annual and seasonal variability in spatio-temporal patterns and trends of precipitation and temperature data, with respect to the IMD gridded data over 34 yrs, are evaluated for six global reanalyses namely, NCEP/NCAR Reanalysis (NCEP R1), NCEP-DOE AMIP-2 Reanalysis (NCEP R2), Climate Forecast System Reanalysis (CFSR), ECMWF Interim Reanalysis (ERA-Interim), Modern Era Retrospective Analysis for Research and Application Land only model (MERRA-Land) and JMA 55-year Reanalysis (JRA-55). The ability of the reanalyses was tested based on several factors such as statistical and categorical indices, spells and trends, for annual and seasonal daily values. Several regional and seasonal differences were observed, particularly over high rainfall regions such as Western Ghats and northeastern India. MERRA-Land is found to give the best results for precipitation over India, which is attributed to the updated forcing data using gauge-based precipitation observations. Similarly, ERA-Interim and JRA-55 exhibit better performance for temperature than other datasets. All reanalyses failed to correctly reproduce the trends in IMD data, for both precipitation and temperature. These observations will provide a better perception on the reliability and applicability of reanalyses for climate and hydrological studies over India.  相似文献   
3.
4.
Groundwater in India plays an important role to support livelihoods and maintain ecosystems and the present rate of depletion of groundwater resources poses a serious threat to water security. Yet, the sensitivity of the hydrological processes governing groundwater recharge to climate variability remains unclear in the region. Here we assess the groundwater sensitivity (precipitation–recharge relationship) and its potential resilience towards climatic variability over peninsular India using a conceptual water balance model and a convex model, respectively in 54 catchments over peninsular India. Based on the model performance using a comprehensive approach (Nash Sutcliffe Efficiency [NSE], bias and variability), 24 out of 54 catchments are selected for assessment of groundwater sensitivity and its resilience. Further, a systematic approach is used to understand the changes in resilience on a temporal scale based upon the convex model and principle of critical slowing down theory. The results of the study indicate that the catchments with higher mean groundwater sensitivity (GWS) encompass high variability in GWS over the period (1988–2011), thus indicating the associated vulnerability towards hydroclimatic disturbances. Moreover, it was found that the catchments pertaining to a lower magnitude of mean resilience index incorporates a high variability in resilience index over the period (1993–2007), clearly illustrating the inherent vulnerability of these catchments. The resilience of groundwater towards climatic variability and hydroclimatic disturbances that is revealed by groundwater sensitivity is essential to understand the future impacts of changing climate on groundwater and can further facilitate effective adaptation strategies.  相似文献   
5.
In line with the passive margin landscape evolutionary model in vogue, sustained erosion and long-distance retreat of the Western Ghat escarpment are widely considered to be the results of erosionally-driven isostatic uplift since Tertiary by many workers. Others have postulated or adduced evidence for strong neotectonic activity in the Ghat region. An obvious question in this regard is whether there is any geomorphometric evidence in support of this widespread view? In order to test the hypothesis of ongoing post-rift fexural uplift or neotectonic activity in the western Deccan Basalt Province (DBP), geomorphometric analysis was carried out and commonly used geomorphic indices of active tectonics (GAT) were derived for 30 selected river basins on both sides of the Western Ghat. SRTM-DEM data and ArcGIS were used to derive the indices. Tectonic geomorphic analysis based on five proxy indicators suggests that the differences in GAT indices, both along strike and across the Western Ghat, are statistically insignificant. The index values are nowhere close to the GAT values typically associated with drainage basins affected by active tectonics and deformation. Mapping of the indices reveals lack of discernable trends. The adduced results indicate that the western DBP belongs to the class of relatively low tectonic activity.  相似文献   
6.
We show that a suitably defined marked correlation function can be used to break degeneracies in halo-occupation distribution modelling. The statistic can be computed on both three-dimensional and two-dimensional data sets and should be applicable to all upcoming galaxy surveys. A proof of principle, using mock catalogues created from N -body simulations, is given.  相似文献   
7.
8.
9.
The predictive hazard analysis at a detailed scale for debris flow runout analysis can be improved significantly through reliable estimation of the input parameters. In this study, a method for database establishment of input parameters at a site-specific scale was laid out for the predictive-based debris flow hazard assessment under extreme rainfall. The adoption of the DAN-3D code necessitated the estimation of three main input parameters: initial volume, bulk basal frictional angle, and growth rate. The initial volume was assessed using a 3D coupled finite element seepage and limit equilibrium-based slope stability analysis. An artificial neural network-based model was developed using 27 debris flow events for predicting the basal bulk frictional angle and consisted of eight factors: plan curvature, profile curvature, percentage of fine content, D50, initial unit weight, initial volume, relative relief ratio, and channel length. Finally, the growth rate was estimated using the previously assessed initial volume, soil depth, and the approximate runout length. The proposed method was validated by application to the Raemian slope in the Woomyeon mountain region, Seoul, for the extreme rainfall event of 27 July 2011. The analysis yielded a final volume of 53,067.9 m3, a velocity upon arrival on the road of 26.81 m/s, and an approximately 0.5-m debris thickness concentrated near the Raemian apartments. The comparison of the predicted debris flow path and debris flow velocity with the actual event demonstrates good similarity and provides a conservative estimate of the volume. This study therefore illustrates the importance of an input parameter database in providing a reliable debris flow runout hazard assessment.  相似文献   
10.
The benthic foraminifera from the Savitri estuary are being reported for the first time. The faunal analyses reveal the occurrence of mixed assemblage. It is observed that Trochammina inflata is the most dominant species and appears to be the indigenous to mangrove environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号