首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   6篇
  国内免费   5篇
测绘学   22篇
大气科学   30篇
地球物理   59篇
地质学   111篇
海洋学   31篇
天文学   40篇
综合类   1篇
自然地理   26篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2018年   8篇
  2017年   13篇
  2016年   16篇
  2015年   9篇
  2014年   11篇
  2013年   25篇
  2012年   12篇
  2011年   8篇
  2010年   2篇
  2009年   9篇
  2008年   12篇
  2007年   11篇
  2006年   12篇
  2005年   11篇
  2004年   12篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  2000年   11篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   8篇
  1985年   6篇
  1984年   9篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1978年   3篇
  1973年   4篇
  1971年   2篇
  1969年   5篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1964年   2篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
1.
Groundwater in India plays an important role to support livelihoods and maintain ecosystems and the present rate of depletion of groundwater resources poses a serious threat to water security. Yet, the sensitivity of the hydrological processes governing groundwater recharge to climate variability remains unclear in the region. Here we assess the groundwater sensitivity (precipitation–recharge relationship) and its potential resilience towards climatic variability over peninsular India using a conceptual water balance model and a convex model, respectively in 54 catchments over peninsular India. Based on the model performance using a comprehensive approach (Nash Sutcliffe Efficiency [NSE], bias and variability), 24 out of 54 catchments are selected for assessment of groundwater sensitivity and its resilience. Further, a systematic approach is used to understand the changes in resilience on a temporal scale based upon the convex model and principle of critical slowing down theory. The results of the study indicate that the catchments with higher mean groundwater sensitivity (GWS) encompass high variability in GWS over the period (1988–2011), thus indicating the associated vulnerability towards hydroclimatic disturbances. Moreover, it was found that the catchments pertaining to a lower magnitude of mean resilience index incorporates a high variability in resilience index over the period (1993–2007), clearly illustrating the inherent vulnerability of these catchments. The resilience of groundwater towards climatic variability and hydroclimatic disturbances that is revealed by groundwater sensitivity is essential to understand the future impacts of changing climate on groundwater and can further facilitate effective adaptation strategies.  相似文献   
2.
Detecting soil salinity changes and its impact on vegetation cover are necessary to understand the relationships between these changes in vegetation cover. This study aims to determine the changes in soil salinity and vegetation cover in Al Hassa Oasis over the past 28 years and investigates whether the salinity change causing the change in vegetation cover. Landsat time series data of years 1985, 2000 and 2013 were used to generate Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) images, which were then used in image differencing to identify vegetation and salinity change/no-change for two periods. Soil salinity during 2000–2013 exhibits much higher increase compared to 1985–2000, while the vegetation cover declined to 6.31% for the same period. Additionally, highly significant (p < 0.0001) negative relationships found between the NDVI and SI differencing images, confirmed the potential long-term linkage between the changes in soil salinity and vegetation cover.  相似文献   
3.
In this study, the effects of changes in historical and projected land use land cover (LULC) on monthly streamflow and sediment yield for the Netravati river basin in the Western Ghats of India are explored using land use maps from six time periods (1972, 1979, 1991, 2000, 2012, and 2030) and the soil and water assessment tool (SWAT). The LULC for 2030 is projected using the land change modeller with the assumption of normal growth. The sensitivity analysis, model calibration, and validation indicated that the SWAT model could reasonably simulate streamflow and sediment yield in the river basin. The results showed that the spatial extent of the LULC classes of urban (1.80–9.96%), agriculture (31.38–55.75%), and water bodies (1.48–2.66%) increased, whereas that of forest (53.04–27.03%), grassland (11.17–4.41%), and bare land (1.09–0.16%) decreased from 1972 to 2030. The streamflow increased steadily (7.88%) with changes in LULC, whereas the average annual sediment yield decreased (0.028%) between 1972 and 1991 and increased later (0.029%) until 2012. However, it may increase by 0.43% from 2012 to 2030. The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, amounting to 428.65 and 58.67 mm, respectively, and sediment yield, amounting to 348 and 43 ton/km2, respectively, in the catchment area from 1972 to 2030. The proposed methodology can be applied to other river basins for which temporal digital LULC maps are available for better water resource management plans.  相似文献   
4.
Cutting performance of diamond wire saw is a key factor influencing mine planning, production scheduling, and equipment selection for dimension stone quarries. It is normally measured in terms of cutting rate. Rock samples collected from various granite and marble quarries in India were tested in laboratory to determine their physico-mechanical properties. Cutting rate of diamond wire saw was measured in the field studies during the actual cutting process in quarries. Using these laboratory determined properties and the cutting rate, a multiple linear regression model has been developed to predict the cutting rate of diamond wire saw. Physico-mechanical properties of rocks determined in laboratory are used as independent variables and cutting rate as predictor variable in the regression model. The study indicates that the cutting rate increases with a decrease in most of the hardness and strength parameters of rock. The final model is tested for its goodness of fit indicating a significant linear relation between cutting rate and physico-mechanical properties, namely tensile strength, slake durability index, and Cerchar hardness index with regression coefficient of 94%. The resulting model can be used suitably for different types of hard to medium hard and soft dimension stones. The generalized model for estimating the cutting rate becomes a handy tool for mining engineers to work out operating efficiency, expenses, planning etc. of the dimension stone block cutting.  相似文献   
5.
Tulsishyam thermal springs are located in the Saurashtra region of Gujarat, India with discharge temperatures varying from 39 to 42 °C. The pH of these thermal springs varies from 7.1 to 7.4, indicating neutral character. Though these thermal springs propagate through the near surface layer of Deccan basalt, detailed geochemical analysis of the thermal waters using Piper diagram suggests that the water is interacting with the granitic basement rock. Silica and cation geothermometry estimates have reservoir temperature in the range of 138 to 207 °C categorizing it into a low to moderate enthalpy geothermal system. Furthermore, the area has high heat flow values of 53–90 mW/m2 because of shallow Moho depth. The prevailing conditions suggest that the geothermal energy can potentially be exploited through an enhanced geothermal system (EGS). The study also indicates different mineral phases that may precipitate out of water during exploitation of geothermal energy and it should be taken into account while designing an EGS for the area.  相似文献   
6.
ABSTRACT

Multivariate statistical analysis and inverse geochemical modelling techniques were employed to deduce the mechanism of groundwater evolution in the hard-rock terrain of Telangana, South India. Q-mode hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to extract the hydrogeochemical characteristics and classify the groundwater samples into three principal groups. Use of thermodynamic stability diagrams and inverse geochemical modelling in PHREEQC identified the chemical reactions controlling hydrogeochemistry of each of the groups obtained from statistical analysis. The model output showed that a few phases are governing the water chemistry in this area and the geochemical reactions responsible for evolution of groundwater chemistry along the flow path are (i) dissolution of evaporite minerals (dolomite, halite); (ii) dissolution of primary silicate minerals (albite, anorthite, K-feldspar, biotite); (iii) precipitation of secondary silicate minerals (kaolinite, quartz, gibbsite, Ca-montmorillonite) along with anhydrite and calcite; and (iv) reverse ion exchange processes.  相似文献   
7.
8.
In the western part of Bundelkhand massif, a caldera with intra-caldera sediments, known as Dhala Formation, occurs as an outlier in and around Mohar village of Shivpuri district, Madhya Pradesh. For the first time, occurrence of peperite is being reported from the basal part of the Dhala sediment. Two types of peperites have been recognized: blocky and fluidal or globular with variable morphology. In peperitic zones, features like soft sediment deformations, presence of sediment into the rhyolite along cracks, vesiculation of the sediments and other evidences suggestive of sediment fluidization are some definite characteristics of interaction of hot magma with wet sediments forming peperite. The occurrence of peperites reflects the contemporaniety of deposition of the Dhala sediments and volcanism, which is well in accordance to the volcanic origin of Dhala structure. Further, the nature of unconformity between the Dhala and overlying Kaimur which is characterized by merely a few centimeter thick pebbly/conglomeratic bed does not appear to represent a large hiatus as expected between the Semri and Kaimur of Vindhyan Supergroup. So, the contemporaniety of the Dhala Formation (at least the lower part) as reflected by occurrence of peperites, coupled with the available age of the rhyolite and the nature of the unconformity between the Dhala and overlying Kaimur provide convincing evidence to correlate the Dhala Formation with the Lower part of the Kaimur and unlikely with the Semri Group or Bijawar as proposed earlier.  相似文献   
9.
Proxy reconstructions of precipitation from central India, north-central China, and southern Vietnam reveal a series of monsoon droughts during the mid 14th–15th centuries that each lasted for several years to decades. These monsoon megadroughts have no analog during the instrumental period. They occurred in the context of widespread thermal and hydrologic climate anomalies marking the onset of the Little Ice Age (LIA) and appear to have played a major role in shaping significant regional societal changes at that time. New tree ring-width based reconstructions of monsoon variability suggest episodic and widespread reoccurrences of monsoon megadroughts continued throughout the LIA. Although the El-Niño Southern Oscillation (ENSO) plays an important role in monsoon variability, there is no conclusive evidence to suggest that these megadroughts were associated with anomalous sea surface temperature anomalies that were solely the result of ENSO-like variability in the tropical Pacific. Instead, the causative mechanisms of these megadroughts may reside in protracted changes in the synoptic-scale monsoon climatology of the Indian Ocean. Today, the intra-seasonal monsoon variability is dominated by ‘active’ and the ‘break’ spells – two distinct oscillatory modes of monsoon that have radically different synoptic scale circulation and precipitation patterns. We suggest that protracted locking of the monsoon into the “break-dominated” mode – a mode that favors reduced precipitation over the Indian sub-continent and SE Asia and enhanced precipitation over the equatorial Indian Ocean, may have caused these exceptional droughts. Impetus for periodic locking of the monsoon into this mode may have been provided by cooler temperatures at the extratropical latitudes in the Northern Hemisphere which forced the mean position of the Inter-Tropical Convergence Zone (ITCZ) further southward in the Indian Ocean.  相似文献   
10.
The Indus flood in 2010 was one of the greatest river disasters in recent history, which affected more than 14 million people in Pakistan. Although excessive rainfall between July and September 2010 has been cited as the major causative factor for this disaster, the human interventions in the river system over the years made this disaster a catastrophe. Geomorphic analysis suggests that the Indus River has had a very dynamic regime in the past. However, the river has now been constrained by embankments on both sides, and several barrages have been constructed along the river. As a result, the river has been aggrading rapidly during the last few decades due to its exceptionally high sediment load particularly in reaches upstream of the barrages. This in turn has caused significant increase in cross-valley gradient leading to breaches upstream of the barrages and inundation of large areas. Our flow accumulation analysis using SRTM data not only supports this interpretation but also points out that there are several reaches along the Indus River, which are still vulnerable to such breaches and flooding. Even though the Indus flood in 2010 was characterized by exceptionally high discharges, our experience in working on Himalayan rivers and similar recent events in rivers in Nepal and India suggest that such events can occur at relatively low discharges. It is therefore of utmost importance to identify such areas and plan mitigation measures as soon as possible. We emphasize the role of geomorphology in flood analysis and management and urge the river managers to take urgent steps to incorporate the geomorphic understanding of Himalayan rivers in river management plans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号