首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   5篇
测绘学   3篇
大气科学   2篇
地球物理   9篇
地质学   15篇
天文学   2篇
  2022年   2篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  1976年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
A new method was developed for analysing and delineating streambed water fluxes, flow conditions and hydraulic properties using coiled fibre‐optic distributed temperature sensing or closely spaced discrete temperature sensors. This method allows for a thorough treatment of the spatial information embedded in temperature data by creating a matrix visualization of all possible sensor pairs. Application of the method to a 5‐day field dataset reveals the complexity of shallow streambed thermal regimes. To understand how velocity estimates are affected by violations of assumptions of one‐dimensional, saturated, homogeneous flow and to aid in the interpretation of field observations, the method was also applied to temperature data generated by numerical models of common field conditions: horizontal layering, presence of lateral flow and variable streambed saturation. The results show that each condition creates a distinct signature visible in the triangular matrices. The matrices are used to perform a comparison of the behaviour of one‐dimensional analytical heat‐tracing models. The results show that the amplitude ratio‐based method of velocity calculation leads to the most reliable estimates. The minimum sensor spacing required to obtain reliable velocity estimates with discrete sensors is also investigated using field data. The developed method will aid future heat‐tracing studies by providing a technique for visualizing and comparing results from fibre‐optic distributed temperature sensing installations and testing the robustness of analytical heat‐tracing models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
With the increase in complexities of interplanetary missions, the main focus has shifted to reducing the total delta-V for the entire mission and hence increasing the payload capacity of the spacecraft. This paper develops a trajectory to Mars using the Lagrangian points of the Sun-Earth system and the Sun-Mars system. The whole trajectory can be broadly divided into three stages: (1) Trajectory from a near-Earth circular parking orbit to a halo orbit around Sun-Earth Lagrangian point L2. (2) Trajectory from Sun-Earth L2 halo orbit to Sun-Mars L1 halo orbit. (3) Sun-Mars L1 halo orbit to a circular orbit around Mars. The stable and unstable manifolds of the halo orbits are used for halo orbit insertion. The intermediate transfer arcs are designed using two-body Lambert’s problem. The total delta-V for the whole trajectory is computed and found to be lesser than that for the conventional trajectories. For a 480 km Earth parking orbit, the total delta-V is found to be 4.6203 km/s. Another advantage in the present approach is that delta-V does not depend upon the synodic period of Earth with respect to Mars.  相似文献   
3.
A hybrid time-frequency method known as Gabor-Wigner transform(GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform(GT) and Wigner-Ville distribution(WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms(frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection.  相似文献   
4.
Magnetic and radiometric surveys were carried out over a felsic dominated rifted margin of Proterozoic volcanic terrain of a mobile belt in the eastern India. The studies were made in blocks I and II of 0.65 sq km and 0.70 sq km respectively over a previously identified conductor in the northern fringe of Dalma Volcanics (DVs). In general, both the blocks show high magnetic signature associated with sulfide mineralisation. The interpretation of magnetic data suggests that nature of the causative source is mainly horizontal cylinder in both the blocks. The depth to the top of the causative source is about 25 m in both the blocks and extends upto 60 m in block I and 40m in block II. Gamma count rate exhibits about a factor of two to three enhancements above the field background for both the blocks. The obtained iso-rad maps are similar to uranium and copper belt in the Singhbhum shear zone south of the study area. The anomalous radiometric signature of the residual soil/rock of the area indicates towards hydrothermal alteration. The detailed magnetic surveys and preliminary iso-rads results seems quite encouraging and may be attributed to VMS setting in the area and potential sulfide mineralisation with uranium mineral association in the DVs province.  相似文献   
5.
Simulation of global warming effect on outdoor thermal comfort conditions   总被引:3,自引:2,他引:1  
In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 °C and 5.6 °C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.  相似文献   
6.
Several alternatives are available for processing low-grade copper ores. These include in-situ, heap, vat and agitation leaching, and may involve the conventional cementation step or the newly developed solvent extraction—electrowinning system. Each of these techniques have their inherent economic and operating advantages and disadvantages, and the selection of the optimum process for a given copper ore is solely based on economic evaluation of the applicable processes. In this paper, efforts have been made to provide engineering feasibility estimates for the above processes under varying operational conditions, such as ore grade and price of copper.  相似文献   
7.
There is no meta‐heuristic approach best suited for solving all optimization problems making this field of study highly active. This results in enhancing current approaches and proposing new meta‐heuristic algorithms. Out of all meta‐heuristic algorithms, swarm intelligence is preferred as it can preserve information about the search space over the course of iterations and usually has fewer tuning parameters. Grey Wolves, considered as apex predators, motivated us to simulate Grey Wolves in the optimization of geophysical data sets. The grey wolf optimizer is a swarm‐based meta‐heuristic algorithm, inspired by mimicking the social leadership hierarchy and hunting behaviour of Grey Wolves. The leadership hierarchy is simulated by alpha, beta, delta and omega types of wolves. The three main phases of hunting, that is searching, encircling and attacking prey, is implemented to perform the optimization. To evaluate the efficacy of the grey wolf optimizer, we performed inversion on the total gradient of magnetic, gravity and self‐potential anomalies. The results have been compared with the particle swarm optimization technique. Global minimum for all the examples from grey wolf optimizer was obtained with seven wolves in a pack and 2000 iterations. Inversion was initially performed on thin dykes for noise‐free and noise‐corrupted (up to 20% random noise) synthetic data sets. The inversion on a single thin dyke was performed with a different search space. The results demonstrate that, compared with particle swarm optimization, the grey wolf optimizer is less sensitive to search space variations. Inversion of noise‐corrupted data shows that grey wolf optimizer has a better capability in handling noisy data as compared to particle swarm optimization. Practical applicability of the grey wolf optimizer has been demonstrated by adopting four profiles (i.e. surface magnetic, airborne magnetic, gravity and self‐potential) from the published literature. The grey wolf optimizer results show better data fit than the particle swarm optimizer results and match well with borehole data.  相似文献   
8.
The identification of homogeneous precipitation regions is essential in the planning, design and management of water resources systems. Regions are identified using a technique that partitions climate sites into groups based on the similarity of their attributes; the procedure is known as regionalization. In this paper the ability of four attribute sets to form large, coherent precipitation zones is assessed in terms of the regional homogeneity of precipitation statistics and computational efficiency. The outcomes provide guidance for effective attribute selection for future studies in Canada. The attributes under consideration include location parameters (latitude, longitude), distance to major water bodies, site elevation and atmospheric variables modelled at different pressure levels. The analysis is conducted in two diverse climate regions within Canada including the Prairie and the Great Lakes–St Lawrence lowlands regions. The method consists of four main steps: (i) formation of the attribute sets; (ii) determination of the preferred number of regions (selection of the c-value) into which the sites are partitioned; (iii) regionalization of climate sites using the fuzzy c-means clustering algorithm; and (iv) validation of regional homogeneity using L-moment statistics. The results of the attribute formation, c-value selection, regionalization and validation processes are presented and discussed in a comparative analysis. Based on the results it is recommended for both regions to use location parameters including latitude, longitude and distance to water bodies (in the Great Lakes region) to form precipitation regions and to consider atmospheric variables for future (climate change) applications of the regionalization procedure.  相似文献   
9.
The use of isotopic tracers for sediment source apportionment is gaining interest with recent introduction of compound‐specific stable isotope tracers. The method relies on linear mixing of source isotopic tracers, and deconvolution of a sediment mixture initially quantifies the contribution of sources to the mixture's tracer signature. Therefore, a correction to obtain real sediment source proportions is subsequently required. As far as we are aware, all published studies to date have used total isotopic tracer content or a proxy (e.g., soil carbon content) for this post‐unmixing correction. However, as the relationship between the isotopic tracer mixture and the source mixture is different for each isotopic tracer, post‐unmixing corrections cannot be carried out with one single factor. This contribution presents an isotopic tracer model structure—the concentration‐dependent isotope mixing model (CD‐IMM)—to overcome this limitation. Herein, we aim to clarify why the “conventional” approach to converting isotopic tracer proportions to source proportions using a single factor is wrong. In an initial mathematical assessment, error incurred by not using CD‐IMM (NCD‐IMM) in unmixing two sources with two isotopic tracers showed a complex relation as a function of relative tracer contents. Next, three artificial mixtures with different proportions of three soil sources were prepared and deconvoluted using 13C of fatty acids using CD‐IMM and NCD‐IMM. Using NCD‐IMM affected both accuracy (mean average error increased up to a threefold compared with the CD‐IMM output) and precision (interquartile range was up to 2.5 times larger). Finally, as an illustrative example, the proportional source contribution reported in a published study was recalculated using CD‐IMM. This resulted in changes in estimated source proportions and associated uncertainties. Content of isotopic tracers is seldom reported in published work concerning use of isotopic tracers for sediment source partitioning. The magnitude of errors made by miscalculation in former studies is therefore difficult to assess. With this contribution, we hope the community will acknowledge the limitations of prior approaches and use a CD‐IMM in future studies.  相似文献   
10.
Geomagnetism and Aeronomy - Electrodynamical coupling between the solar wind’s plasma and the Earth’s magnetosphere creates geomagnetic disturbances recorded on the ground. This work...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号