首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   4篇
测绘学   1篇
地球物理   22篇
海洋学   5篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有28条查询结果,搜索用时 500 毫秒
1.
Ebb-tidal deltas are highly dynamic environments affected by both waves and currents that approach the coast under various angles. Among other bedforms of various scales, these hydrodynamics create small-scale bedforms (ripples), which increase the bed roughness and will therefore affect hydrodynamics and sediment transport. In morphodynamic models, sediment transport predictions depend on the roughness height, but the accuracy of these predictors has not been tested for field conditions with strongly mixed (wave–current dominated) forcing. In this study, small-scale bedforms were observed in the field with a 3D Profiling Sonar at five locations on the Ameland ebb-tidal delta, the Netherlands. Hydrodynamic conditions ranged from wave dominated to current dominated, but were mixed most of the time. Small-scale ripples were found on all studied parts of the delta, superimposed on megaripples. Even though a large range of hydrodynamic conditions was encountered, the spatio-temporal variations in small-scale ripple dimensions were relatively small (height 0.015 m, length 0.11 m). Also, the ripples were always highly three-dimensional. These small dimensions are probably caused by the fact that the bed consists of relatively fine sediment. Five bedform height predictors were tested, but they all overestimated the ripple heights, partly because they were not created for small grain sizes. Furthermore, the predictors all have a strong dependence on wave- and current-related velocities, whereas the ripple heights measured here were only related to the near-bed orbital velocity. Therefore, ripple heights and lengths in wave–current-dominated, fine-grained coastal areas ( mm) may be best estimated by constant values rather than values dependent on the hydrodynamics. In the case of the Ameland ebb-tidal delta, these values were found to be m and m. ©2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
2.
We observed the onshore migration (3.5 m/day) of a nearshore sandbar at Tairua Beach, New Zealand during 4 days of low-energy wave conditions. The morphological observations, together with concurrent measurements of waves and suspended sediment concentrations, were used to test a coupled, wave-averaged, cross-shore model. Because of the coarse bed material and the relatively low-energy conditions, the contribution of the suspended transport to the total transport was predicted and observed to be negligible. The model predicted the bar to move onshore because of the feedback between near-bed wave skewness, bedload, and the sandbar under weakly to non-breaking conditions at high tide. The predicted bathymetric evolution contrasts, however, with the observations that the bar migrated onshore predominantly at low tide. Also, the model flattened the bar, while in the observations the sandbar retained its steep landward-facing flank. A comparison between available observations and numerical simulations suggests that onshore propagating surf zone bores in very shallow water (< 0.25 m) may have been responsible for most of the observed bar behaviour. These processes are missing from the applied model and, given that the observed conditions can be considered typical of very shallow sandbars, highlight a priority for further field study and model development. The possibility that the excess water transported by the bores across the bar was channelled alongshore to near-by rip-channels further implies that traditional cross-shore measures to judge the applicability of a cross-shore morphodynamic model may be misleading.  相似文献   
3.
The response to a shoreface nourishment of the two-bar system at Noordwijk (the Netherlands) is analyzed based on a daily data set of time-exposure video images collected during about 6 years, complemented with topographic and bathymetric surveys. The 1.7 Mm3 nourishment, implemented as a 3 km alongshore bump seaward of the outer bar, migrated more than 300 m onshore in 4 years before losing its integrity. Furthermore, the nourishment interrupted the autonomous seaward migration of both bars for the entire duration of the study period and, allaying earlier fears, did not intensify the three-dimensional patterns in the bars, such as the crescentic plan-shape and rip channels. The nourishment did result in clear head effects on both flanks, with the bar becoming discontinuous and the flank section decaying or becoming attached to an offshore-located bar, while the section of bar landward of the nourishment became attached to a landward-located bar. This sequence of morphologies is known as bar switching. Each switching episode took almost one year to complete and can therefore not be ascribed to individual wave events. We suspect that shoreface nourishments enhance the possibility of bar switching by creating alongshore variability in the position and depth of the outer bar and in its cross-shore migration rate and direction. The Noordwijk nourishment did not influence the shoreline position as its trend did not undergo distinctive variations after 1998. Differences in the response of the Noordwijk sandbars to the shoreface nourishment compared with other Dutch nourishments are attributed to the location and size (volume per unit length) of the nourishment with respect to the sandbars and to the median grain size of the nourished material.  相似文献   
4.
Nearshore sandbars are characteristic features of sandy surf zones and have been observed with a variety of geometries in cross-shore (e.g. location) and longshore direction (e.g. planform). Although the behaviour of sandbars has been studied extensively on spatial scales up to kilometres and timescales up to years, it remains challenging to observe and explain their behaviour on larger spatial and temporal scales, especially in locations where coastline curvature can be prominent. In this paper, we study a data set with 38 years of coastal profiles, collected with alongshore intervals of 50 m, along the 34 km-long curved sandy shoreline of Sylt island, Germany. Sylt's shoreline has an orientation difference of ~20° between the northern and southern half of the island. We found that the decadal coastal profiles on the southern half show features of a low-tide terrace and a sandbar located further from the shoreline (~441 m). On the nothern half, the sandbar was located closer to the shoreline (~267 m) and was less pronounced, while the profiles show transverse bar and rip features. The alongshore planform also differed systematically and significantly along the two island sides. The sandbar on the southern island half, with alongshore periodicity on a larger length scale (~2240 m), was coupled out-of-phase to the shoreline, while no phase coupling was observed for the sandbar with periodicity on a shorter length scale (~670 m) on the northern half. We related the observed geometric differences of the sandbars to the difference in the local wave climate along Sylt, imposed by the shoreline shape. Our observations imply that small alongshore variations in wave climate, due to the increasing shoreline curvature on larger spatial scales, can lead to significant alongshore differences in the decadal evolution of coastal profiles, sandbars and shorelines. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
5.
An 8‐year time series of weekly shoreline data collected at the Gold Coast, Australia, is used to examine the temporal evolution of a beach, focusing on the frequency response of the shoreline to time‐varying wave height and period. Intriguingly, during 2005 the movement of the shoreline at this site changed from a seasonally‐dominated mode (annual cycle) to a storm‐dominated (~monthly) mode. This unexpected observation provides the opportunity to explore the drivers of the observed shoreline response. Utilizing the calibration of an equilibrium shoreline model to explore the time‐scales of underlying beach behavior, the best‐fit frequency response (days?1) is shown to be an order of magnitude higher post‐2004, suggesting that a relatively subtle change in wave forcing can drive a significant change in shoreline response. Analysis of available wave data reveals a statistically significant change in the seasonality of storms, from predominantly occurring at the start of the year pre‐2005 to being relatively consistent throughout the year after this time. The observed change from one mode of shoreline variability to another suggests that beaches can adapt relatively quickly to subtle changes in the intra‐annual distribution of wave energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
6.
The moisture content ws of a beach surface strongly controls the availability of sand for aeolian transport. Our predictive capability of the spatiotemporal variability in ws, which depends to a large extent on water table depth, is, however, limited. Here we show that water table fluctuations and surface moisture content observed during a 10-day period on a medium-grained (365μm) planar (1:30) beach can be predicted well with the nonlinear Boussinesq equation extended to include run-up infiltration and a soil–water retention curve under the assumption of hydrostatic equilibrium. On the intertidal part of the beach the water table is observed and predicted to continuously fall from the moment the beach surface emerges from the falling tide to just before it is submerged by the incoming tide. We find that on the lower 30% of the intertidal beach the water table remains within 0.1–0.2 m from the surface and that the sand is always saturated (ws≈20%, by mass). Higher up on the intertidal beach, the surface can dry to about 5% when the water table has fallen to 0.4–0.5 m beneath the surface. Above the high-tide level the water table is always too deep (>0.5 m) to affect surface moisture and, without precipitation, the sand is dry (ws < 5 − 8%). Because the water table depth on the emerged part of the intertidal beach increases with time irrespective of whether the (ocean) tide falls or rises, we find no need to include hysteresis (wetting and drying) effects in the surface-moisture modelling. Model simulations suggest that at the present planar beach only the part well above mean sea level can dry sufficiently (ws < 10%) for sand to become available for aeolian transport. ©2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
7.
Subtidal nearshore sandbars may exhibit cyclic net offshore migration during their multi‐annual lifetime along many sandy coasts. Although this type of behavior can extend continuously for several kilometers, alongshore variations in cross‐shore bar position and bar amplitude are commonly observed. Alongshore variability is greatest when bars display km‐scale disruptions, indicative of a distinct alongshore phase shift in the bar cycle. An outer bar is then attached to an inner bar, forming a phenomenon known as a bar switch. Here, we investigate such large‐scale alongshore variability using a process‐based numerical profile model and observations at 24 transects along a 6 km section of the barred beach at Noordwijk, The Netherlands. When alongshore variability is limited, the model predicts that the bars migrate offshore at approximately the same rate (i.e. the bars remain in phase). Only under specific bar configurations with high wave‐energy levels is an increase in the alongshore variability predicted. This suggests that cross‐shore processes may trigger a switch in the case of specific antecedent morphological configurations combined with storm conditions. It is expected that three‐dimensional (3D) flow patterns augment the alongshore variability in such instances. In contrast to the observed bar behaviour, predicted bar morphologies on either side of a switch remain in different phases, even though the bars are occasionally located at a similar cross‐shore position. In short, the 1D model is not able to remove a bar switch. This data‐model mismatch suggests that 3D flow patterns are key to the dissipation of bar switches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
Double sandbar systems are common morphological features along sandy, wave‐dominated, micro‐ to meso‐tidal coastlines. In the companion paper, we demonstrated how various alongshore inner‐bar rip‐channel patterns can develop through morphological coupling to an alongshore‐variable outer bar. The simulated coupling patterns are, however, scarcely observed in the field. Instead, inner‐bar rip channels more often possess remarkably smaller and more variable alongshore length scales, suggesting that coupling mechanisms do not play a substantial role in the overall double‐sandbar dynamics. Here we use a numerical model to show that the relative importance of self‐organization and morphological coupling changes in favour of the latter with an increase in waterdepth variability along the outer‐bar crest. Furthermore, we find that the typical alongshore variability in inner‐bar rip‐channel scale is indicative of a mixture of self‐organization and morphological coupling rather than self‐organization alone. Morphological coupling may thus be more important to understanding and predicting the evolution of inner‐bar rip channels than previously envisaged. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   
9.
We report on a 6‐year nearshore bathymetric dataset from the Danube Delta (Romanian Black Sea coast) that comprises 16 km of erosive, stable and accumulative low‐lying micro‐tidal beaches northward of Sf. Gheorghe arm mouth. Two to three two‐dimensional longshore sandbars exhibit a net multi‐annual cyclic (2.8–5.5 years) offshore migration (20–50 m yr?1) in a similar way to other coasts worldwide. Bar morphology and behavior on the sediment‐rich accretionary (dissipative) sector differ substantially from that on the erosive (intermediate) sector. Shoreface slope is the most important factor controlling sandbar number and behavior. It determines different wave‐breaking patterns in the surf zone, translated into different offshore sediment transport and bar zone widths along the study site. Additionally, sediment availability, as a result of the distance from the arm mouth and of the long‐term evolution of the coast, controls the sandbar volume variability. These are all ultimately reflected in the variations of sandbar migration rates and cycle periods. A non‐dimensional morpho‐sedimentary parameter is finally presented, which expresses the bar system change potential as offshore sediment transport potential across the bar zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
10.
Cross-shore migratory behavior of nearshore sandbars is commonly studied with nearshore bathymetric-evolution models that represent underlying processes of hydrodynamics and sediment transport. These models, however, struggle to reproduce natural cross-shore sandbar behavior on timescales of a few days to weeks and have uncertain skill on longer scales of months to years. One particular concern for the use of models on prediction timescales that far exceed the timescale of the modeled processes is the exponential accumulation of errors in the nonlinear model equations. The relation between cross-shore sandbar migration, sandbar location and wave height has previously been demonstrated to be weakly nonlinear on timescales of several days, but it is unknown how this nonlinearity affects the predictability of long-term (months to years) cross-shore sandbar behavior. Here we study the role of nonlinearity in the predictability of sandbar behavior on timescales of a few days to several months with data-driven neural network models. Our analyses are based on over 5600 daily-observed cross-shore sandbar locations and daily-averaged wave forcings from the Gold Coast, Australia, and Hasaki, Japan. We find that neural network models are able to hindcast many aspects of cross-shore sandbar behavior, such as rapid offshore migration during storms, slower onshore return during quiet periods, seasonal cycles and annual to interannual offshore-directed trends. Although the relation between sandbar migration, sandbar location and wave height is nonlinear, sandbar behavior can be hindcasted accurately over the entire lifespan of the sandbars at the Gold Coast. Contrastingly, it is difficult to hindcast the long-term offshore-directed trends in sandbar behavior at Hasaki because of exponential accumulation of errors over time. Our results further reveal that during periods with low-wave conditions it becomes increasingly difficult to predict sandbar locations, while during high waves predictions become increasingly accurate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号