首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   19篇
  国内免费   2篇
测绘学   10篇
大气科学   37篇
地球物理   86篇
地质学   150篇
海洋学   25篇
天文学   50篇
综合类   3篇
自然地理   35篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   14篇
  2019年   16篇
  2018年   14篇
  2017年   26篇
  2016年   30篇
  2015年   27篇
  2014年   16篇
  2013年   25篇
  2012年   18篇
  2011年   25篇
  2010年   11篇
  2009年   21篇
  2008年   12篇
  2007年   16篇
  2006年   20篇
  2005年   12篇
  2004年   9篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  2000年   8篇
  1999年   11篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   6篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1975年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有396条查询结果,搜索用时 750 毫秒
1.
The Hellenic plate boundary region, located in the collision zone between the Nubian/Arabian and Eurasian lithospheric plates, is one of the seismo-tectonically most active areas of Europe. During the last 15 years, GPS measurements have been used to determine the crustal motion in the area of Greece with the aim to better understand the geodynamical processes of this region. An extended reoccupation network covering whole Greece has been measured periodically in numerous GPS campaigns since the late eighties, and a continuous GPS network has been operated in the region of the Ionian Sea since 1995. In this paper, we present a new detailed high-quality solution of continuous and campaign-type measurements acquired between 1993 and 2003. During the GPS processing, a special effort was made to obtain consistent results with highest possible accuracies and reliabilities. Data of 54 mainly European IGS and EUREF sites were included in the GPS processing in order to obtain results which are internally consistent with the European kinematic field and order to allow for a regional interpretation. After an overview of the results of the IGS/EUREF sites, the results from more than 80 stations in Greece are presented in terms of velocities, time series, trajectories and strain rates. Previous geodetic, geological and seismological findings are generally confirmed and substantially refined. New important results include the observation of deformation zones to the north and to the south of the North Aegean Trough and in the West Hellenic arc region, arc-parallel extension of about 19 mm/yr along the Hellenic arc, and compression between the Ionian islands and the Greek mainland. Due to continuous long-term observations of 4–8 years, it was possible to extract height changes from the GPS time series. In Greece, we observe a differential subsidence of the order of 2 mm/yr between the northern and central Ionian islands across the Kefalonia fault zone. The differential subsidence of the central Ionian islands with respect to the northwestern Greek mainland amounts to 4 mm/yr.  相似文献   
2.
3.
4.
5.
Seismic, sidescan sonar, bathymetric multibeam and ODP (Ocean Drilling Program) data obtained in the submarine channel between the volcanic islands of Gran Canaria and Tenerife allow to identify constructive features and destructive events during the evolution of both islands. The most prominent constructive features are the submarine island flanks being the acoustic basement of the seismic images. The build-up of Tenerife started following the submarine stage of Gran Canaria because the submarine island flank of Tenerife onlaps the steeper flank of Gran Canaria. The overlying sediments in the channel between Gran Canaria and Tenerife are chaotic, consisting of slumps, debris flow deposits, syn-ignimbrite turbidites, ash layers, and other volcaniclastic rocks generated by eruptions, erosion, and flank collapse of the volcanoes. Volcanic cones on the submarine island flanks reflect ongoing submarine volcanic activity. The construction of the islands is interrupted by large destructive events, especially by flank collapses resulting in giant landslides. Several Miocene flank collapses (e.g., the formation of the Horgazales basin) were identified by combining seismic and drilling data whereas young giant landslides (e.g., the Güimar debris avalanche) are documented by sidescan, bathymetric and drilling data. Sediments are also transported through numerous submarine canyons from the islands into the volcaniclastic apron. Seismic profiles across the channel do not show a major offset of reflectors. The existence of a repeatedly postulated major NE-SW-trending fault zone between Gran Canaria and Tenerife is thus in doubt. The sporadic earthquake activity in this area may be related to the regional stress field or the submarine volcanic activity in this area. Seismic reflectors cannot be correlated through the channel between the sedimentary basins north and south of Gran Canaria because the channel acts as sediment barrier. The sedimentary basins to the north and south evolved differently following the submarine growth of Gran Canaria and Tenerife in the Miocene.  相似文献   
6.
7.
Geological mapping and diamond exploration in northern Quebec and Labrador has revealed an undeformed ultramafic dyke swarm in the northern Torngat Mountains. The dyke rocks are dominated by an olivine-phlogopite mineralogy and contain varying amounts of primary carbonate. Their mineralogy, mineral compositional trends and the presence of typomorphic minerals (e.g. kimzeyitic garnet), indicate that these dykes comprise an ultramafic lamprophyre suite grading into carbonatite. Recognized rock varieties are aillikite, mela-aillikite and subordinate carbonatite. Carbonatite and aillikite have in common high carbonate content and a lack of clinopyroxene. In contrast, mela-aillikites are richer in mafic silicate minerals, in particular clinopyroxene and amphibole, and contain only small amounts of primary carbonate. The modal mineralogy and textures of the dyke varieties are gradational, indicating that they represent end-members in a compositional continuum.

The Torngat ultramafic lamprophyres are characterized by high but variable MgO (10–25 wt.%), CaO (5–20 wt.%), TiO2 (3–10 wt.%) and K2O (1–4 wt.%), but low SiO2 (22–37 wt.%) and Al2O3 (2–6 wt.%). Higher SiO2, Al2O3, Na2O and lower CO2 content distinguish the mela-aillikites from the aillikites. Whereas the bulk rock major and trace element concentrations of the aillikites and mela-aillikites overlap, there is no fractional crystallization relation between them. The major and trace element characteristics imply related parental magmas, with minor olivine and Cr-spinel fractionation accounting for intra-group variation.

The Torngat ultramafic lamprophyres have a Neoproterozoic age and are spatially and compositionally closely related with the Neoproterozoic ultramafic lamprophyres from central West Greenland. Ultramafic potassic-to-carbonatitic magmatism occurred in both eastern Laurentia and western Baltica during the Late Neoproterozoic. It can be inferred from the emplacement ages of the alkaline complexes and timing of Late Proterozoic processes in the North Atlantic region that this volatile-rich, deep-seated igneous activity was a distal effect of the breakup of Rodinia. This occurred during and/or after the rift-to-drift transition that led to the opening of the Iapetus Ocean.  相似文献   

8.
The Canadian Arctic Islands expose a complex network of dykes and sills that belong to the High Arctic Large Igneous Province (HALIP), which intruded volatile‐rich sedimentary rocks of the Sverdrup Basin (shale, limestone, sandstone and evaporite) some 130 to 120 million years ago. There is thus great potential in studying the HALIP to learn how volatile‐rich sedimentary rocks respond to magmatic heating events during LIP emplacement. The HALIP remains, however, one of the least well known LIPs on the planet due to its remote location, short field season, and harsh climate. A Canadian–Swedish team of geologists set out in summer 2015 to further explore HALIP sills and their sedimentary host rocks, including the sampling of igneous and meta‐sedimentary rocks for subsequent geochemical analysis, and high pressure‐temperature petrological experiments to help define the actual processes and time‐scales of magma–sediment interaction. The research results will advance our understanding of how climate‐active volatiles such as CO2, SO2 and CH4 are mobilised during the magma–sediment interaction related to LIP events, a process which is hypothesised to have drastically affected Earth's carbon and sulphur cycles. In addition, assimilation of sulphate evaporites, for example, is anticipated to trigger sulphide immiscibility in the magma bodies and in so doing could promote the formation of Ni‐PGE ore bodies. Here we document the joys and challenges of ‘frontier arctic fieldwork’ and discuss some of our initial observations from the High Arctic Large Igneous Province.  相似文献   
9.
Permafrost records, accessible at outcrops along the coast of Oyogos Yar at the Dmitry Laptev Strait, NE-Siberia, provide unique insights into the environmental history of Western Beringia during the Last Interglacial. The remains of terrestrial and freshwater organisms, including plants, coleopterans, chironomids, cladocerans, ostracods and molluscs, have been preserved in the frozen deposits of a shallow paleo-lake and indicate a boreal climate at the present-day arctic mainland coast during the Last Interglacial. Terrestrial beetle and plant remains suggest the former existence of open forest-tundra with larch (Larix dahurica), tree alder (Alnus incana), birch and alder shrubs (Duschekia fruticosa, Betula fruticosa, Betula divaricata, Betula nana), interspersed with patches of steppe and meadows. Consequently, the tree line was shifted to at least 270 km north of its current position. Aquatic organisms, such as chironomids, cladocerans, ostracods, molluscs and hydrophytes, indicate the formation of a shallow lake as the result of thermokarst processes. Steppe plants and beetles suggest low net precipitation. Littoral pioneer plants and chironomids indicate intense lake level fluctuations due to high evaporation. Many of the organisms are thermophilous, indicating a mean air temperature of the warmest month that was greater than 13 °C, which is above the minimum requirements for tree growth. These temperatures are in contrast to the modern values of less than 4 °C in the study area. The terrestrial and freshwater organism remains were found at a coastal exposure that was only 3.5 m above sea level and in a position where they should have been under sea during the Last Interglacial when the global sea level was 6–10 m higher than the current levels. The results suggest that during the last warm stage, the site was inland, and its modern coastal situation is the result of tectonic subsidence.  相似文献   
10.
The synthesis of experimental understanding of catchment behaviour and its translation into qualitative perceptual models is an important objective of hydrological sciences. We explore this challenge by examining the cumulative understanding of the hydrology of three experimental catchments and how it evolves through the application of different investigation techniques. The case study considers the Huewelerbach, Weierbach and Wollefsbach headwater catchments of the Attert basin in Luxembourg. Subsurface investigations including bore holes and pits, analysis of soil samples and Electrical Resistivity Tomography measurements are presented and discussed. Streamflow and tracer data are used to gain further insights into the streamflow dynamics of the catchments, using end‐member mixing analysis and hydrograph separation based on dissolved silica and electrical conductivity. We show that the streamflow generating processes in all three catchments are controlled primarily by the subsolum and underlying bedrock. In the Huewelerbach, the permeable sandstone formation supports a stable groundwater component with little seasonality, which reaches the stream through a series of sources at the contact zone with the impermeable marls formation. In the Weierbach, the schist formation is relatively impermeable and supports a ‘fill and spill’‐type of flow mechanism; during wet conditions, it produces a delayed response dominated by pre‐event water. In the Wollefsbach, the impermeable marls formation is responsible for a saturation‐excess runoff generating process, producing a fast and highly seasonal response dominated by event water. The distinct streamflow generating processes of the three catchments are represented qualitatively using perceptual models. The perceptual models are in turn translated into quantitative conceptual models, which simulate the hydrological processes using networks of connected reservoirs and transfer functions. More generally, the paper illustrates the evolution of perceptual models based on experimental fieldwork data, the translation of perceptual models into conceptual models and the value of different types of data for processes understanding and model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号