首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   7篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Seismic wave energy in surface layers is calculated based on vertical array records at four sites during the 1995 Hyogo-ken Nambu earthquake by assuming vertical propagation of SH waves. The upward energy generally tends to decrease as it goes up from the base layer to the ground surface particularly in soft soil sites. Theoretical study on 1D multi-layers model to investigate the basic energy flow mechanism indicates that the energy at the ground surface can be smaller on softer soils due to high soil damping during strong shaking even if resonance effect is considered. A simple calculation for a shear-vibrating structure resting on foundation ground shows that induced strain in the structure is directly related to the energy or the energy flux of surface layers. Hence, a general perception that soft soil sites tend to suffer heavier damage than stiff sites should be explained not by greater incident energy but by other reasons such as degree of resonance. Furthermore, it is recommended that not only acceleration or velocity but also S-wave velocity should be specified at a layer where a design seismic motion is given, so that the seismic wave energy can clearly be quantified in seismic design practice.  相似文献   
2.
Earthquake-induced slope stability is evaluated by the force-equilibrium method in engineering practice. This method provides a safety factor against initiating failure or displacement according to the Newmark model along a fixed slip surface but it cannot evaluate failure deformations after failure occurs. An energy approach is proposed as an alternative means for evaluating slope failures and subsequent flow deformations. The driving energy for slope displacement is considered to be the earthquake energy and the gravitational potential energy. As a first step in the research, an energy balance is formulated for the model of a rigid block resting on an inclined plane. Then, an innovative model test is developed, in which the energy balance in a sliding slope is measured on a shake table. The earthquake energy used for the slope failure can be successfully quantified in the test and its contribution to displacement is discussed in the light of the energy balance established for the block model.  相似文献   
3.
A number of slope failures during the 2004 Niigataken Chuetsu earthquake were investigated, revealing that the travel distance becomes longer as the slope gets gentler and the failed soil mass gets larger. An energy-based approach, proposed in previous research to evaluate the travel distance of failed slopes, is modified by adding the model test results and introducing a simple evaluation method. The energy approach is then applied to a number of slopes failed during the earthquake to back-calculate mobilized friction coefficients, revealing their strong dependency on initial slope inclinations. The friction coefficient was found to be smaller than the initial slope inclination for gentler slopes, indicating that the failed soil mass tends to accelerate. In contrast, that for steeper slopes was higher than initial slope inclination. The friction coefficient was found to decrease with increasing volume of failed slope, which is quite consistent with previous case studies including large non-seismic landslides.  相似文献   
4.
In liquefied ground, lateral flow is sometimes much larger than surface settlement and may exceed several meters even in a gentle slope of less than a few percent. It occurs not only during but also after earthquake shaking. Conventional laboratory soil tests using uniform sand cannot reproduce this phenomenon. Its mechanism is still poorly understood. In this paper, there is a major focus on the mechanism involving void redistribution or water film effects in layered sand deposits using recent findings obtained by different researchers on void redistribution and the associated lateral flow movement that potentially occurs in layered sand deposits. 1G shake table tests, 1D tube tests, torsional simple shear tests, in situ soil investigations, case history studies, etc. are used to develop an understanding of the lateral flow mechanism during liquefaction. Some of the major findings are; sand deposits in the field consist of sublayers with different particle sizes and permeability and readily develop water films by post-liquefaction void redistribution at sublayer boundaries. The water films may have served as sliding surfaces for large flow during the 1964 Niigata earthquake without the constraint of the dilatancy effect because the water films serve as shear stress isolators. The potential of this type of flow failure will be high for loose sand with relative density around 40% or less.  相似文献   
5.
Site amplification defined as the peak value of spectrum ratio was investigated using surface and base accelerations recorded in a number of KiK-net down-hole arrays in Japan during three major earthquakes. An important task was to determine the spectral amplifications relative to outcropping motions with the aid of the down-hole array records. Based on soil data available for individual arrays, theoretical amplifications were calculated and adjusted to coincide with the peak amplifications of the array records. A good and unique correlation was found between the peak amplifications thus obtained and S-wave velocity ratios, defined by S-wave velocity in base layer divided by average S-wave velocity , for different sites and different earthquakes. The value of was evaluated from fundamental mode frequency and the thickness of an equivalent surface layer in which peak amplification is exerted. The conventional parameter Vs30; averaged shear wave velocity in the top 30 m used in current design codes, did not correlate well with the obtained amplifications. It is suggested that may be determined not only from Vs-logging data but also from microtremor measurements.  相似文献   
6.
Results from a benchmark test on full-scale piles are used to investigate the response of piles to lateral spreading. In the experiment, two single piles, a relatively flexible pile that moves together with the surrounding soil and a relatively stiff pile that does not follow the ground movement have been subjected to large post-liquefaction ground displacement simulating piles in laterally spreading soils. The observed response of the piles is first presented and then the results are used to examine the lateral loads on the pile from a non-liquefied soil at the ground surface and to evaluate the stiffness characteristics of the spreading soils. The measured ultimate lateral pressure from the crust soil on the stiff pile was about 4.5 times the Rankine passive pressure. The back-calculated stiffness of the liquefied soil was found to be in the range between 1/30 and 1/80 of the initial stiffness of the soil showing gradual decrease in the course of lateral spreading.  相似文献   
7.
Wave energy flow in shallow ground depth is calculated based on main shock records obtained at 30 vertical array sites throughout Japan during nine recent strong earthquakes (MJ=6.4–8.0) by assuming vertical propagation of SH waves. It is generally found that upward energy tends to decrease considerably as it goes up from the base (about 100 m deep) to the ground surface. Large energy is reflected at layer boundaries with clear impedance contrast and returns to deeper ground, so that only less than 10–30% of the upward energy at the base level arrives at the ground surface in most sites. Energy dissipation calculated from the upward and downward energies tends to increase with the increase of damping ratio of the ground back-calculated from the seismic records. It is also found that the upward energy at the base may roughly be estimated for engineering purposes using spherical energy radiation of the body wave despite strong effects of fault rupture/path mechanisms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号