首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   12篇
地质学   9篇
海洋学   8篇
天文学   8篇
自然地理   3篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2012年   5篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
1.
To analyze global gene expressions, we constructed a cDNA microarray from a basal chordate, the ascidian Ciona intestinalis. Ciona is a cosmopolitan species and a genomic analysis of Ciona revealed that ascidians had approximately 15,500 protein-coding genes. Our "Ciona intestinalis cDNA chip version 1 (Ci cDNA chip ver. 1)" has arrayed 13,400 unique Ciona cDNAs. To establish a detection system for gene expression profiles in wild ascidians using a cDNA microarray, we analyzed gene expressions in the whole body of Ciona adults after exposure to 100 nM tributyltin (TBT) for 24 h. In our preliminary array data using Ci cDNA chip ver. 1, we found more than 200 genes that showed strong differential expressions. These genes encoded proteins that were concerned with stress response, detoxification, oxidoreduction reaction, biosynthesis, and catabolism. This, the first large cDNA microarray of this animal, should facilitate analyses of global gene expressions following exposure to TBT.  相似文献   
2.
Propagation of electromagnetic (EM) waves from an earthquake focus in the conductive Earth has been investigated using 1/1,000,000 scaling models taking earth-ionosphere and ocean-Moho plane parallel-plate waveguides into account. Microwaves at a frequency, ωm, a million times higher than that of seismic EM signal (SEMS), ω, were generated at the model focus. They are propagated in a salt solution modeling the earth's crust and reflected by ocean, fault planes, ionosphere and Moho plane all made by aluminum. Distribution of EM power was mapped by scanning a detector antenna over the model Earth's surface. The skin depth, δ, calculated by the exact skin depth equation, 1/δ=ω(μ/2)1/2 [(1+(1/ωρ)2)1/2 −1]1/2 where dielectric constant, and permeability, μ are the same but resistivity, ρ, 10−6 times smaller than that of Earth, gave 10−6 times small skin depth validating the model scaling index. Images for evanescent and wave-ripple standing waves disturbed by normal, strike-slip and dip-slip conductive fault planes have been obtained using an aluminum plate. The co-circular contour map above the epicenter due to evanescence was pushed to the north east direction from the epicenter by the presence of ocean for the Loma Prieta earthquake, while to north direction for the Kobe earthquake. The intensity of EM ULF emissions for the Loma Prieta earthquake is discussed quantitatively.  相似文献   
3.
Lower-tropospheric tropical synoptic-scale disturbances (TSDs) are associated with severe weather systems in the Asian Monsoon region. Therefore, exact prediction of the development and behavior of TSDs using atmospheric general circulation models is expected to improve weather forecasting for this region. Recent state-of-the art global cloud-system resolving modeling approaches using a Nonhydrostatic Icosahedral Atmospheric Model (NICAM) may improve representation of TSDs. This study evaluates TSDs over the western Pacific in output from an Atmospheric Model Intercomparison Project (AMIP)-like control experiment using NICAM. Data analysis compared the simulated and observed fields. NICAM successfully simulates the average activity, three-dimensional structures, and characteristics of the TSDs during the Northern summer. The variance statistics and spectral analysis showed that the average activity of the simulated TSDs over the western Pacific during Northern summer broadly captures that of observations. The composite analysis revealed that the structures of the simulated TSDs resemble the observed TSDs to a large degree. The simulated TSDs exhibited a typical southeast- to northwest-oriented wave-train pattern that propagates northwestward from near the equator around 150 ° E toward the southern coast of China. However, the location of the simulated wave train and wave activity center was displaced northward by approximately a few degrees of latitude from that in the observation. This displacement can be attributed to the structure and strength of the background basic flow in the simulated fields. Better representation of the background basic states is required for more successful simulation of TSDs.  相似文献   
4.
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics.  相似文献   
5.
ABSTRACT

The aim of this article is to describe a convenient but robust method for defining neighbourhood relations among buildings based on ordinary Delaunay diagrams (ODDs) and area Delaunay diagrams (ADDs). ODDs and ADDs are defined as a set of edges connecting the generators of adjacent ordinary Voronoi cells (points representing centroids of building polygons) and a set of edges connecting two centroids of building polygons, which are the generators of adjacent area Voronoi cells, respectively. Although ADDs are more robust than ODDs, computation time of ODDs is shorter than that of ADDs (the order of their computation time complexity is O(nlogn)). If ODDs can approximate ADDs with a certain degree of accuracy, the former can be used as an alternative. Therefore, we computed the ratio of the number of ADD edges to that of ODD edges overlapping ADDs at building and regional scales. The results indicate that: (1) for approximately 60% of all buildings, ODDs can exactly overlap ADDs with extra ODD edges; (2) at a regional scale, ODDs can overlap approximately 90% of ADDs with 10% extra ODD edges; and (3) focusing on judging errors, although ADDs are more accurate than ODDs, the difference is only approximately 1%.  相似文献   
6.
The effect of ocean acidification, caused by the increase in pCO2 in seawater, on phytoplankton population and on related organic nitrogen production was experimentally examined by use of a natural coastal microbial population. pCO2 and pH were controlled by aeration with air in which pCO2 was at the current level (control), for which ambient air was used, and with air in which pCO2 was ??800?? and ??1200?? ppm, in 500-L culture vessels. The experiment was continued for 15?days after addition of the inorganic nutrients such as nitrate, phosphate, and silicate. During most of the experimental period, a minor increase in phytoplankton biomass was noted, probably because of low irradiance, an increase in phytoplankton biomass was observed at the end of the experiment. Flow cytometric and microscopic observations revealed that this increase was because of Chrysochromulina sp. (Haptophyceae). The growth of Chrysochromulina sp. was most obvious in the control vessel, and tended to be obscured by increasing pCO2 (decrease in pH), indicating the possibility that ocean acidification inhibits the growth of specific phytoplankton groups, for example Chrysochromulina sp. Production of particulate organic nitrogen (PON), determined by the 15N tracer method, also diminished under acidified conditions compared with that at the current level.  相似文献   
7.
8.
This study presents the dynamic behaviour of a rigid block which rests on a footing supported by a spring and a dashpot on a rigid base. The response of the rigid body is examined carefully when the base is excited by a harmonic force. It is found that a periodic motion appears in three different modes: stick-stick, stick-slip and slip-slip. The conditions that initiate the stick-stick and slip-slip modes are derived in explicit forms and the maximum sliding displacement is also obtained analytically. Useful dimensionless parameters are proposed for the presentation of the dynamic behaviour. The accuracy of results is confirmed by the response history computed by the Nigam-Jennings method.  相似文献   
9.
If knowledge of our theories on the directivity of tsunamis had received worldwide attention, the following operations could have been carried out internationally just after the large earthquake of 19 September 1985 which occurred near Acapulco, Mexico. Having found the great circle, “line S” which is perpendicular to the coast around Acapulco, we could have calculated the angles between line S and line A and between line S and line D, where line A and line D are the great circle connecting Acapulco and Auckland, New Zealand and that connecting Acapulco and Duke of York Island (Chile), respectively. The resultant angles are 30?43′ and 41?49′(>68?48′/2), we could thereafter neglect the eastern half of the offshore energy flux. When we assume that the speed of trans-Pacific tsunami is 400 knots, the probability that the actual tsunami will come earlier than the calculated arrival time proves to be $$\frac{1}{{\sqrt {2\pi } }}\int_{ - {\text{ }}\infty }^{ - {\text{ }}0.689} {e^{ - t^{{2 \mathord{\left/ {\vphantom {2 2}} \right. \kern-\nulldelimiterspace} 2}} } dt = 0.2454} $$ Contact with New Zealand prior to the forecasted arrival time was essential, but the tsunami attention for the Japanese coast was unnecessary. Without such application of our directivity theories, frequent fruitless warnings will be issued for future trans-Pacific tsunamis. Quick improvements in warning procedures are required.  相似文献   
10.
The 1999 Chi-Chi, Taiwan earthquake, MW = 7.6, caused severe damage in the near-fault region of the earthquake. In order to evaluate site effects in the near-field strong motions we estimate S-wave velocity structures of sediments at four sites using array records of microtremors. We also recalculated S-wave velocity structures at other four sites previously reported. To show the validity of the estimated S-wave velocity structures we separate empirical site responses from aftershock records using the generalized inversion method and show the agreement between empirical and theoretical site responses. We also show an observed fact that suggests soil nonlinearity during the Chi-Chi earthquake by comparing horizontal-to-vertical spectral ratios (HVRs) for main shock records with HVRs for aftershock records. Then we calculate one-dimensional equivalent-linear site responses using the estimated S-wave velocity structures and the main shock records observed on the surface. It is found that site amplification due to thick (about 6 km) sediments is one of the important factors for explaining the long-period velocity pulses of about 5 to 10 sec observed at sites in the footwall during the Chi-Chi earthquake. It is also found that the theoretical site responses of shallow soft sediments at sites that sustained severe damage in the hanging wall shows significant amplification around 1 sec. As the amplitude of velocity pulses with period around 1 sec is most critical in causing damage to ordinary buildings of moderate heights, our results suggest that the 1-sec period velocity pulses, amplified by the site response of shallow sediments should contribute to the severe damage during the Chi-Chi earthquake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号