首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地质学   6篇
综合类   1篇
  2024年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2009年   4篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
西藏色齐拉山地区立体气候特征初步分析   总被引:1,自引:0,他引:1  
利用西藏色齐拉山地区不同海拔高度的8个自动站和3个实测气象站1年的近地面观测资料,分析了该地区气温、地温、降水量、湿度和风速等气象要素的季节变化特征,探讨了东、西坡局地气候特征差异形成的原因。结果表明:色齐拉山地区1月为最冷月、7月为最暖月;月平均最高气温、最低气温与平均气温的季节变化一致。气温日较差大年较差小。年平均气温直减率东、西坡分别为0.54℃/100m和0.73℃/100m,西坡大于东坡。地气温差冬季西坡大于东坡,夏季东坡大于西坡。年、月平均地温直减率西坡仍大于东坡;东坡除夏季7、8月份外,地温直减率小于气温直减率;西坡除冬季(12月和1月),地温直减率大于气温直减率。降水量东坡比西坡多,海拔2500m以上地区4~10月降水总量随着海拔高度的升高呈增加趋势,增加率为20.9mm/100m。空气相对湿度冬季低夏季高,年变化呈单峰型。东、西坡冬季风速较强夏季相对较弱,初春风速最大。东、西坡气候差异与海拔高度、坡向、下垫面性质有关。  相似文献   
2.
农田土壤中元素的形态和有效态是评价元素活动性的重要指标。不同研究者利用有效态来代表哪几种形态大多是引用文献,两者之间的关系缺少专门的研究资料参考,影响了土地质量评价的精准度。本文按照国家相关分析标准,采用电感耦合等离子体质谱法(ICP-MS)等分析方法对河南洛阳市农田土壤Se高背景区土壤中Se、Zn的有效态和不同形态进行分析,采用含量对比、相关性分析、回归分析等统计方法以及地质背景分析进行研究。结果表明,农田土壤中有效态Zn的平均含量为3.63mg/kg,高于(水溶态+离子态+碳酸盐态)Zn的平均含量2.74mg/kg,远高于(水溶态+离子态)Zn的平均含量0.42mg/kg。有效态Zn可以用水溶态、离子态、碳酸盐态Zn之和代表。在玄武岩区发育的农田土壤中有效态Zn含量为0.023mg/kg,与水溶态Zn含量0.027mg/kg相当,具有低活性特征。种植小麦的农田土壤中有效态Se平均含量为0.019mg/kg,水溶态、离子态、碳酸盐态Se含量之和平均值为0.019mg/kg,Se的有效态可以用水溶态、离子态、碳酸盐态之和代替。种植玉米、谷子、芝麻、花生、红薯的农田土壤中,有效态Se平均...  相似文献   
3.
<正>2016年10月底,住房和城乡建设部发布了关于《城市地下管线管理条例(征求意见稿)》公开征求意见的通知。这使得庞大而复杂的"地下城"再次走进公众视野。星罗棋布的城市地下管线,就像是埋在城市"皮肤"下的"毛细血管",承载着一个工业社会生产生活所需的各类基础服务输送:从城市地面到地下9米,是电力电缆、水管、燃气管、信号电缆等与居民城市生活息息相关的管线;地下9米  相似文献   
4.
西藏色齐拉山地区立体气候特征初步分析   总被引:1,自引:0,他引:1  
利用西藏色齐拉山地区不同海拔高度的8个自动站和3个实测气象站1年的近地面观测资料,分析了该地区气温、地温、降水量、湿度和风速等气象要素的季节变化特征,探讨了东、西坡局地气候特征差异形成的原因。结果表明:色齐拉山地区1月为最冷月、7月为最暖月;月平均最高气温、最低气温与平均气温的季节变化一致。气温日较差大年较差小。年平均气温直减率东、西坡分别为0.54℃/100m和0.73℃/100m,西坡大于东坡。地气温差冬季西坡大于东坡,夏季东坡大于西坡。年、月平均地温直减率西坡仍大于东坡;东坡除夏季7、8月份外,地温直减率小于气温直减率;西坡除冬季(12月和1月),地温直减率大于气温直减率。降水量东坡比西坡多,海拔2500m以上地区4~10月降水总量随着海拔高度的升高呈增加趋势,增加率为20.9mm/100m。空气相对湿度冬季低夏季高,年变化呈单峰型。东、西坡冬季风速较强夏季相对较弱,初春风速最大。东、西坡气候差异与海拔高度、坡向、下垫面性质有关。   相似文献   
5.
利用1971—2005年西藏"一江两河"主要农区4个气象站点月平均最高气温、最低气温、降水量、风速、相对湿度、日照时数等资料,应用Penman-Monteith模型计算了农田蒸散量,分析其空间分布、年际和年代际变化特征,并讨论了影响蒸散量变化的气象因子.研究表明:近35a西藏主要农区年蒸散量表现为不同程度的减小趋势,为-16.5~-71.6mm.(10a)-1,以泽当减幅最大;四季蒸散量均呈现为减小趋势,以冬季减幅最明显.土壤水分年亏缺量呈明显的减少趋势,平均每10a减小59.6mm,特别是近25a(1981—2005年)减幅更明显.20世纪70年代至90年代年、季蒸散量均为逐年代减小趋势.90年代与80年代比较,主要农区各季土壤水分亏缺量都有不同程度的减小,尤其是夏季由亏缺转为盈余.日照时数和平均风速的显著下降,以及平均相对湿度的明显增加可能是蒸散量显著下降的主要原因,平均气温日较差的显著减小和降水量的增加在蒸散量减少趋势中也起着重要作用.  相似文献   
6.
升温率略高于平均最高气温的升温率.珠峰地区日照时数和平均风速的显著下降,以及相对湿度的明显增加可能是蒸发皿蒸发量下降的主要原因.  相似文献   
7.
石磊  杜军  周刊社  卓嘎 《冰川冻土》2016,38(5):1241-1248
基于美国气候预测中心(CPC)土壤湿度资料和80个青藏高原气象观测站的降水、气温资料,对青藏高原土壤湿度时空演变、突变,及土壤湿度与降水、气温的关系进行了分析.结果表明:青藏高原土壤湿度呈自东南向西北递减的分布特征,土壤湿度与降水量在空间上有很好的对应关系,在时间上存在2~4个月的时滞相关.1980-2012年高原土壤湿度呈显著增多趋势,土壤湿度变化发生突变的年份为2003年.在土壤湿度变化过程中,降水和气温的作用明显,5-10月降水量和1-6月气温是影响高原土壤湿度变化的主要因素.5-10月降水量决定了多水期的土壤湿度,而多水期土壤湿度和1-6月气温共同决定了少水期的土壤湿度.  相似文献   
8.
采用1961-2010年雅鲁藏布江流域6个气象站近50 a降水量的实测数据,统计降水量的年、干季、湿季平均序列;结合流域6个水文站近50 a年径流序列资料,分析雅鲁藏布江流域降水变化特征及其对径流量的影响. 研究表明: 雅鲁藏布江流域1961-2010年近50 a年平均降水量表现为不显著增加,增加速率为3.3 mm·(10a)-1,其中干季、湿季分别为1.9 mm·(10a)-1 和1.4 mm·(10a)-1,均为增加趋势;降水量的年代际变化在20世纪60年代相对偏多,70年代较平稳,而80年代为最少,到90年代有所回升,21世纪前10 a降水量处于不显著的增多态势. 雅鲁藏布江径流的变差系数CV值在0.15~0.40之间,年际变化较小. 径流的年代际变化总体上存在一定的周期性波动,20世纪60年代是一个相对的丰水期,70年代减少,80年代达到最小值,之后径流有所回升,进入21世纪前10 a呈不显著增加趋势. 年、湿季尺度上径流量和降水量的相关显著,湿季作为径流主要形成期,其降水量的多寡直接影响流域径流量的丰枯,湿季降水量的增减影响着流域径流量的增减. 由此可见,降水变化是雅鲁藏布江天然径流最主要影响因子,最终也决定了雅鲁藏布江流域年径流量的丰枯.  相似文献   
9.
2009-2010年青藏高原土壤湿度的时空分布特征   总被引:2,自引:0,他引:2  
卓嘎  陈涛  周刊社  罗珍 《冰川冻土》2015,37(3):625-634
利用2009年7月1日至2010年6月30日中国气象局研制的多源土壤温湿度融合分析产品, 分析了青藏高原地区不同深度的土壤湿度分布特征. 结果表明: 青藏高原土壤湿度具有显著的季节变化特征, 即春季土壤湿度最大, 夏季次之, 秋季最小; 土壤湿度呈现出浅层和深层低湿、中间层高湿的特点, 且土壤湿度由浅到深层变化幅度逐渐减小. 随着温度回升, 3-8月为土壤湿度增加时段, 湿度增加区域从藏东南向西北、塔里木盆地向藏东北扩展, 9月以后土壤湿度呈大范围减小. 随着季节变化, 浅层土壤湿度高湿度区域从南部向北部移动, 中间层土壤湿度的变化与浅层相反, 深层土壤湿度季节变化差异不大, 高湿度区域基本位于高原南部.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号