首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
卓嘎  罗布  巴桑曲珍 《冰川冻土》2021,43(6):1704-1717
青藏高原土壤水热状况对气候变化和植被退化方面的研究具有重要意义,土壤湿度的准确刻画还会影响到数值预报模式对当地及其下游地区降水的模拟能力。为此,采用中国科学院那曲高寒气候环境观测研究站安多观测点2014年1—12月的土壤温度、土壤湿度观测资料以及同期安多气象站观测数据,分析了青藏高原那曲中部不同深度土壤温湿度的分布特征及其与气温、降水量等气象要素的关系。结果表明:土壤温度在浅层为正弦曲线,随着土壤深度的增加,曲线逐渐接近直线。土壤升温迅速而降温过程缓慢。封冻和解冻日期随土壤深度的增加而推迟,封冻期逐渐缩短。不同层次土壤湿度日内变化较小。月变化呈单峰型结构,峰值和谷值基本出现在8月和12月。土壤湿度上升速率较下降速率缓慢。区域尺度上GLDAS-NOAH资料显示出类似的变化特征。土壤温湿度在一年中的变化不一致,但土壤温湿度呈显著正相关。浅层土壤的温度梯度明显大于深层;浅层土壤湿度最大,中间层较大,深层土壤湿度最小。随着干季向湿季的转换,由于太阳辐射的增加,非绝热加热呈增加的趋势。土壤湿度与气象要素在不同时段的相关性存在一些差异,但总体上土壤湿度与气温、降水量和相对湿度呈正相关,与风速、日照时数相关性不显著。  相似文献   

2.
青藏高原春季土壤湿度与中国东部夏季降水之间的关系   总被引:11,自引:6,他引:5  
应用SVD方法分析了青藏高原地区春季土壤湿度异常和中国东部地区夏季降水之间的关系.结果表明,青藏高原不同地区、不同深度的土壤湿度与中国东部夏季降水的相关特征不同.青藏高原东北部和西北部0~10cm深度(表层)土壤湿度与中国华北、东北地区的夏季降水为正相关,而与华南地区为负相关;青藏高原中部及南部0~10cm表层土壤湿度与华北地区夏季的降水有较强负相关;青藏高原北部及东部10~200cm深度(深层)土壤湿度与华北、东北地区的夏季降水为负相关,而与华南地区夏季降水为正相关;青藏高原中东部10~200cm深层土壤湿度与长江中下游和华南大部分地区夏季降水呈负相关关系.即青藏高原不同地区、不同深度层春季土壤湿度的变化,对中国东部地区的夏季降水具有显著影响.  相似文献   

3.
青藏高原玉树地区巴塘高寒草甸土壤温湿特征分析   总被引:6,自引:1,他引:5  
张娟  沙占江  徐维新 《冰川冻土》2015,37(3):635-642
在青藏高原腹地青海省玉树藏族自治州玉树县巴塘高寒草甸草场设立野外试验场, 进行土壤温、湿动态监测. 利用温、湿监测数据及同步气象数据资料, 采用对比分析及线性趋势等方法, 分析了巴塘高寒草甸日、年土壤温、湿变化状况. 结果表明: 土壤温度从10:00时左右开始上升, 至17:00-18:00时达到最高值, 然后开始下降, 在第二天9:00时左右到达最低; 土壤湿度在10:00时达到最低值, 在18:00时达到最大值, 随着土壤深度的增加, 土壤湿度逐渐降低. 土壤温、湿度在不同的季节表现出不同的变化趋势, 二个点不同土层表现出相对一致的变化, 随着土壤深度的增加, 土壤温、湿度逐渐降低; 随着与雪栅距离的增加, 土壤温、湿度的变化幅度减弱; 随着土壤深度的增加, 雪栅的影响也逐渐减小. 通过对土壤温、湿不同时期的特征分析, 5月中旬至8月中旬, 土壤湿度与土壤温度呈现相反的变化趋势, 而在其余时期土壤温湿变化趋势一致; 秋季向冬季转换时, 土壤温湿呈显著下降趋势, 而后土壤进入封冻时期; 冬季向春季转换时, 土壤温湿呈显著上升趋势, 土壤进入解冻时期. 冷季时, 25 cm土壤温度高于5 cm; 暖季时, 5 cm土壤温度高于25 cm.  相似文献   

4.
全球土壤湿度的记忆性及其气候效应   总被引:7,自引:1,他引:6  
利用1948-2010年全球GPCC月平均降水,GHCN_CAMS月平均气温资料,GLDAS-NOAH月平均、3h土壤湿度和降水资料以及观测资料,分析了土壤湿度与降水和气温之间的关系。结果表明:全球土壤湿度记忆性的时间尺度在20~110d不等,干旱地区浅层(0~10cm)土壤湿度记忆性较短,中深层(10~200cm)较长,湿润区及高山地区土壤湿度记忆性均较长,北半球春季土壤湿度记忆性最长,南半球夏季土壤湿度记忆性最长;降水和气温对同期土壤湿度在不同地区的作用不同,北半球夏、秋季降水是土壤湿度的主要来源,除非洲干旱区以外的中低纬度地区及南半球,土壤湿度随降水的增加而增加,随气温的升高而减小;浅层土壤湿度受同期降水和气温的影响最为显著;前期降水和气温对土壤湿度的影响存在着较大的空间差异,北半球中高纬度地区,当年的夏、秋季降水是次年春季土壤湿度的主要来源,中层土壤(10~100cm)是降水的主要存储层。浅层土壤受外界影响较大,对前期气候信息的存贮有限。中低纬度地区及南半球,中深层土壤更多地是存储前一个季节的气温和降水信息,对跨季节气候信息的存储并不明显;低纬度地区春季土壤湿度的增加可能有利于后期降水的增多,高纬度地区春季土壤湿度的增加可能使后期降水减少,在季节尺度上中层土壤湿度对后期的降水影响较明显,在月至日尺度上浅层土壤湿度对后期降水的影响更重要;春季干旱区尤其是中层土壤湿度的增加可能有利于夏季气温的降低。  相似文献   

5.
基于CMIP5的东亚地区降雪量变化特征分析   总被引:1,自引:0,他引:1  
利用JMA的JRA-55降雪量及CMIP5的6个模式模拟的降雪量资料, 分析了东亚地区降雪量年变化特征及年际变化特征. 结果表明: 东亚地区降雪量在1958-2004年期间具有明显的年际变化特征及区域分布特征; 降雪主要集中在11月至翌年的4月, 这6个月中降雪量占年总降雪量的82%; 年际变化特征呈现出一种波动变化略有增加的趋势, 但是增加的幅度有所不同. 从区域分布特征来看, 东亚地区降雪主要分布在东北亚、青藏高原及新疆等3个区域. CMIP5的6个模式对东亚区域及其子区域东北亚、青藏高原、新疆1850-2004年降雪量年际变化特征的模拟差异较大. 多模式集合预报的结果表现为, 在过去155 a(1850-2004年)东亚区域降雪量呈现明显减小趋势, 东北亚和青藏高原降雪量为波动略有减小趋势, 新疆降雪量为明显增加趋势.  相似文献   

6.
以辽宁省为例,采用统计分析方法,根据辽宁省61个气象站1951-2013年0~320 cm地温资料,分析了季节性冻土区地温场结构和变化特征。结果表明:地温最冷月出现时间随着深度增加而推后,辽宁各地浅层地温最冷月基本均为1月,深层地温最冷月为1-5月,深度越深温度越高。地温最热月出现时间也随深度增加而推后,浅层地温最热月为7、8月,深层地温最热月为8-10月,深度越深温度越低。越深层地温受地表影响越小,320 cm深度与地表的月平均最大温差达到19℃左右,40 cm深度与地表的月平均最大温差仅在8℃左右。随着深度增加,地温的季节变化减小,沈阳320 cm深度地温年内温差不足8℃。5~80 cm深度3-8月为储能期,160 cm深度5-9月为储能期,320 cm深度6-10月为储能期。越接近地表,地温日变化越显著,40 cm以下深度基本可以忽略日变化。沈阳地温升高程度大于气温,以向大气输送热量为主。地表最冷月变暖率明显大于最热月,但随着土层加深各土层最冷月、最热月变暖的程度无明显规律。深层地温的年际变化有时会受到更深层热源的非气候扰动。地温变化对气候、冻土区域工程等的影响不容忽视。  相似文献   

7.
石磊  杜军  周刊社  卓嘎 《冰川冻土》2016,38(5):1241-1248
基于美国气候预测中心(CPC)土壤湿度资料和80个青藏高原气象观测站的降水、气温资料,对青藏高原土壤湿度时空演变、突变,及土壤湿度与降水、气温的关系进行了分析.结果表明:青藏高原土壤湿度呈自东南向西北递减的分布特征,土壤湿度与降水量在空间上有很好的对应关系,在时间上存在2~4个月的时滞相关.1980-2012年高原土壤湿度呈显著增多趋势,土壤湿度变化发生突变的年份为2003年.在土壤湿度变化过程中,降水和气温的作用明显,5-10月降水量和1-6月气温是影响高原土壤湿度变化的主要因素.5-10月降水量决定了多水期的土壤湿度,而多水期土壤湿度和1-6月气温共同决定了少水期的土壤湿度.  相似文献   

8.
青藏高原南北降水变化差异研究   总被引:13,自引:5,他引:8  
利用青藏高原1960-2004年近45 a气象台站年降水记录, 对高原中东部年降水做了空间变化分析, 发现高原以唐古拉山为界, 高原南北降水变化存在明显差异, 特别是高原南部和东北部降水几乎成相反的变化. 进一步分析5个重建的长时间降水序列, 发现青藏高原南北降水在百年时间尺度上也存在明显的差异. 在百年时间尺度上, 过去600 a高原南北降水变化都在1740年和1850年左右发生突变. 1740年以前, 整个高原北部降水都在波动中增加, 而高原南部在减小;1740-1850年期间, 高原北部降水在波动中减小, 而高原南部在增加;1850年以后, 高原北部降水又在波动中增加, 而高原南部降水在减小. 高原南北降水变化的空间差异主要是由季风和西风带决定的.  相似文献   

9.
王萍  赵慧颖  闫平  朱海霞  翟墨  李秀芬 《冰川冻土》2021,43(6):1764-1772
黑龙江省春季土壤冻融剧烈,土壤湿度和温度受土壤冻融影响较大,利用黑龙江省64个气象观测站1961—2018年的逐日最高气温、最低气温、平均气温、降水量、地温资料及34个农气观测站人工观测的1981—2018年的土壤湿度资料,分析土壤冻结期间的气象要素变化,研究春季土壤冻融过程中湿度和温度的变化。结果表明:土壤冻结期从北向南缩短,且逐年缩短,冻结期平均气温从北向南升高,逐年上升,降水量西部少、东部和北部多,逐年增加;春季冻融次数平原少、山区多,逐年减少。春季融雪开始日期由北向南提前,并且呈现逐年提前的趋势,融雪期升温速率北部、东部低,中部、南部高;在春季冻融过程中,土壤湿度随着土壤深度的增加而增多,东部土壤湿度受土壤融冻影响最大;在整个冬季土壤冻结期间,北部、中部及东部土壤湿度是增加的,且随着土壤深度的增加,土壤湿度增加的越多,而西部土壤湿度是减少的,且随着土壤深度的增加,土壤湿度减少的越少;春季土壤冻融期间,0 cm平均地温全省平均在-17.3~22.1 ℃之间,南部与全省变化趋势基本一致,升温趋势明显,而北部升温速度明显慢于南部。  相似文献   

10.
基于气象台站、再分析资料分析以及过去研究成果的综合,系统总结了过去50年青藏高原水文环境变化趋势及其区域差异性.显著、同步的地表升温是青藏高原水分循环最为显著驱动特征.日照、风速的下降形成大气驱动因子的减弱,表现为蒸发力下降.大气水汽含量与其他因子造成降水量微弱增加,但区域差异明显.随着地表气温上升,最大积雪水当量减少、冻土活动层厚度增加.尽管蒸发力下降,地表土壤湿度的增加依然导致蒸散发微弱增加.  相似文献   

11.
藏北高原土壤温湿变化特征分析   总被引:12,自引:2,他引:10  
利用"全球协调加强观测计划(CEOP)亚澳季风之青藏高原试验"(CAMP/Tibet,2001—2010)的观测资料,从不同的时间尺度分析了藏北高原不同地点不同深度的土壤温度和土壤湿度变化特征.结果表明:10 cm以上日平均土壤温度呈正弦变化,而10 cm以下土壤温度变化不大;各层土壤温度最高都出现在7~8月;年际气候的差异至少可以反映到40 cm土壤;各层土壤湿度无明显日变化,存在明显月变化,夏季降水量的多少对各层土壤湿度都有明显的影响.  相似文献   

12.
青藏高原西缘札达至泉水湖剖面大地电磁探测结果表明, 研究区被雅江缝合带、班公-怒江缝合带划分为3个构造区域, 由南至北分别为喜玛拉雅地体、冈底斯地体和羌塘地体.研究区内普遍存在中下地壳高导层, 高导层的顶面埋深起伏较大, 冈底斯内的高导层埋深大, 羌塘和喜玛拉雅地体内的高导层埋深较浅.在班公-怒江缝合带南侧高导层埋深最大, 班公-怒江缝合带南北两侧高导层埋深存在一个约20km的错动.冈底斯地体内的地壳高导层呈北倾形态, 南羌塘的地壳具有双高导层.沿剖面的上地壳存在多组规模不等、产状不同的电性梯度带或畸变带, 反映了沿剖面地区的缝合带与断裂带分布情况.根据电性结构特征, 推断了雅江缝合带、班公-怒江缝合带以及龙木措、噶尔藏布等主要断裂的构造特征与空间分布.   相似文献   

13.
贵州喀斯特区域土壤水分时空分布特征   总被引:1,自引:0,他引:1  
基于贵州喀斯特区域2011-2015年53个自动土壤水分观测站0~100 cm的逐日土壤水分、降水、气温资料,分析了不同农业气候区土壤水分时空分布特征、变异系数以及土层之间的相关关系。得出以下主要结论:(1)各区土壤水分的范围总体相差较小,据 0~100 cm层土壤水分相对小值区的分布形态,可分为持续性土壤干旱区、季节性土壤干旱区、土壤湿润区。(2)依据各区土壤水分的变异系数相对大值区的时空分布形态类似可分为变异一致区、季节变异区及持续变异区。(3)通过10~50 cm对其下层土壤水分的关系研究发现,温暖湿润区、温和湿润区、高寒区研究土层(10~50 cm)与其下层(20~90 cm)土壤水分相关系数均>0.60,其余各区土层只与其下20~40 cm土层相关系数较大,而对其下更深土层相关系数较小;从滑动日数来看,各区10~50 cm土层与其下10~20 cm、30~50 cm、60~100 cm层最大相关系数的滑动日数随深度的增加而增加,分别为3~10日、10~20日、20~30日。(4)通过对比各区土壤水分与其变异系数分布特征发现,土壤水分的低值区发生的层次及时间与变异系数大值区基本相对应,土壤水分的变化除与降水、气温直接关系外,还可能与土质及环境等其他要素有关。   相似文献   

14.
冻融期东北农田土壤温度和水分变化规律及影响因素分析   总被引:3,自引:3,他引:0  
为了更好地认识季节性冻融区冻融过程对农田土壤温度和水分的影响, 以吉林省长春市黑顶子河流域为研究对象, 监测了冻融期流域内玉米田和水稻田土壤温度和水分的变化过程。结果表明: 冻融期表层土壤温度主要受积雪厚度影响, 深层土壤温度主要受土壤初始含水率影响。冻结期, 冻结层含水率几乎都呈增加趋势, 其中浅层土壤增幅最大; 冻结速度慢、 初始含水量低、 相邻土层含水量高的土层冻结过程水分增加量更大, 反之则小。融化期, 各下垫面、 土层土壤含水率基本呈下降趋势, 且主要集中在表层0 ~ 30 cm, 水分损失以蒸发为主, 冻结层对土壤蒸发有抑制作用; 冻结层的融化是造成各下垫面不同土层土壤含水率差异, 以及各土层在不同融化阶段土壤含水率差异的主要原因。  相似文献   

15.
季节冻土区黑土耕层土壤冻融循环期湿度与温度变化研究   总被引:3,自引:3,他引:0  
在黑龙江省水利科学研究院水利试验研究中心的综合实验观测场, 利用2011年11月-2012年4月一个冬季冻融循环期的实测黑土耕层剖面土壤湿度和温度数据, 对典型中-深季节冻土区黑土耕层土壤湿度与冻结融化期土壤温度变化进行研究. 根据阳坡的黑土耕层土壤浅层1 cm、 5 cm、 10 cm及15 cm四种不同深度, 对冻融循环过程中土壤湿度随冻结融化期土壤温度变化特征进行分析, 研究黑土耕层土壤冻融过程中不同深度土壤水分的变化情况, 了解降水和温度对不同深度土壤湿度变化的影响. 结果表明: 在北京时间08:00、 14:00及20:00, 阳坡15 cm、 10 cm、 5 cm及1 cm深度黑土耕层土壤湿度随冻结融化期土壤温度变化的线性相关可决系数分别为0.9298、 0.9216、 0.5989、 0.7281, 斜率平均标准偏差分别为0.017、 0.019、 0.095、 0.056, 截距平均标准偏差分别为0.17、 0.25、 1.31、 0.83. 阳坡10 cm及15 cm深度的黑土耕层土壤湿度随冻结融化期土壤温度变化呈十分显著的线性相关关系. 阳坡5 cm深度的黑土耕层土壤湿度在冻结融化期与土壤温度变化线性关系稍微显著. 在整个冻结融化期, 因受太阳辐射、 降水及蒸发的强烈影响, 阳坡浅层1 cm深度黑土耕层土壤湿度与土壤温度线性相关性不如10 cm及15 cm深度的关系显著, 但比5 cm深度的关系显著.  相似文献   

16.
甘肃黄土高原土壤水分气候特征   总被引:13,自引:0,他引:13  
利用甘肃黄土高原42个气象站1961—2000年3~7月降水量和11个农业气象观测站逐年3~11月上旬的土壤重量含水率资料,分析了甘肃黄土高原土壤水分的地域和时间分布特征。结果表明:①甘肃黄土高原土壤水分从西南向东北减少,中部有一条从北向南的干舌,干旱中心在陇中北部,受六盘山的影响较大;②甘肃黄土高原分为7个气候区:陇中、陇东土壤严重缺水区,陇中、陇东土壤季节性缺水区,土壤水分适宜区,土壤水分湿润区和甘南高原土壤水分湿润区;③陇中北部和陇东北部土壤严重缺水区浅层土壤严重缺水主要出现在春季和春末夏初,深层土壤也常年处于缺水状态。季节土壤缺水区浅层主要缺水在5、6月份,深层土壤水分陇东高于陇中,适宜区和湿润区无明显土壤缺水时段。  相似文献   

17.
盐渍土是江苏沿海地区开发建设需关注的地质环境问题之一。本文系统采集5 m以浅的土样,开展易溶盐试验,研究了江苏沿海盐渍土分布规律、盐渍化程度及影响因素。研究结果表明:全区盐渍土平行于海岸线分布;以中、弱盐渍土为主,强盐渍土零星分布。受沉积环境、气候、水文地质条件、人类活动等共同影响,盐渍化程度空间差异明显。平面上,盐渍化程度呈北强南弱、向海岸线方向延伸有逐渐增强的趋势,强盐渍土分布于连云港黏性土区,岩性、地下水矿化度为主导影响因素。垂向上,表层普遍积盐,连云港地区分带不明显,大丰和南通地区自地表而下可划分为三带,表层土蒸发积盐、中层盐动态变化、下层土饱水盐稳定,地下水位、土体结构为主导影响因素。随着沿海大开发的快速推进,为防止次生盐渍化问题,需关注地面沉降导致的地面高程损失诱发海水入侵加重表层土盐渍化,工程建设中可设置隔离层截断高矿化度地下水的毛细作用。  相似文献   

18.
The spatial and temporal soil moisture distribution is an important control on surface ecological processes in areas with rock outcrops resulting from karst rocky desertification (KRD). To explore the local effects of bare rocks within different seasons, soil moisture was measured in a KRD region (Fuyuan County, Yunnan Province, southwest China) at different depths and in different directions and distances from rock outcrops in both the dry and the wet seasons. The soil moisture north and east of the rocks was higher compared to the other directions and to the control plot. This effect is attributed to the shading by the rocks. The shading effect is evident in all seasons but more pronounced in the dry season. In the wet season, the directional dependency is restricted to the surface layer and the increase in soil moisture with depth is more pronounced around the rocks than at the control plot. This is attributed to precipitation-induced runoff from the rock outcrops infiltrating into the deeper layers at the rock–soil interface. These findings suggest the redistribution of water in the wet season and the spatial variation of evapotranspiration in the dry season are factors controlling the local soil moisture pattern around the rock outcrops.  相似文献   

19.
为了研究西北干旱地区盐渍土在自然气候条件下的水-热场变化特征与盐胀变形规律,在4.5 m深试验坑内埋设了若干套竖向变形观测设备、含水率和温度传感器,对坑内不同深度土层的温度场、水分场和盐胀变形随季节性变化状况进行了为期1 a的动态监测和分析研究。结果表明:0.6 m以上土层相较于其他土层对气候温度变化的响应更加积极、温差变化幅值也更大,且土层间的温差幅值随降温期的不断深入而增大;土体含水率变化主要受降水、蒸发和温度梯度的耦合影响, 0.4 m以上土层水分的变化幅度较其他土层而言更为显著,土层水分迁移沿深度方向表现出分带现象;盐胀变形主要受温度和水分迁移的影响,盐胀变形主要发生在距地表1.0 m土层深度内,主要发展时间在当年11月至次年2月之间。  相似文献   

20.
测井方法在青海木里煤田冻土研究中的应用   总被引:1,自引:0,他引:1  
研究表明冻土的电阻率为非冻土的3倍,常规测井参数可用于冻土层的综合解释,而井温曲线的"U"字型与"L"字型不但可以划分不同性质的冻土层,而且能够准确的解释其冻土厚度。通过分析聚乎更、江仓、热水三个矿区的30个测温孔,发现其井田北部和南部区域,多年冻土层均有增厚的趋势,底界从北到南逐渐加深。对江仓矿区的长期观测及矿井开拓,验证了多年冻土层的总体变化范围与所获测井成果基本一致。根据对木里煤田冻土的研究,发现测井解释的多年冻土层厚度一般小于其真厚度,而季节性冻土层的解释厚度要大于其真实厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号