首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   2篇
地质学   2篇
海洋学   2篇
  2015年   1篇
  2013年   1篇
  2009年   2篇
排序方式: 共有4条查询结果,搜索用时 121 毫秒
1
1.
2.
Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor injection. However, many issues have to be resolved before the commercial production. In the present study, a 2-D axisymmetric simulator for gas production from hydrate reservoirs is developed. The simulator includes equations of conductive and convective heat transfer, kinetic of hydrate decomposition, and multiphase flow. These equations are discretized based on the finite difference method and are solved with the fully implicit simultaneous solution method. The process of laboratory-scale hydrate decomposition by depressurization is simulated. For different surrounding temperatures and outlet pressures, time evolutions of gas and water generations during hydrate dissociation are evaluated, and variations of temperature, pressure, and multiphase fluid flow conditions are analyzed. The results suggest that the rate of heat transfer plays an important role in the process. Furthermore, high surrounding temperature and low outlet valve pressure may increase the rate of hydrate dissociation with insignificant impact on final cumulative gas volume.  相似文献   
3.
4.
Natural gas hydrate, as a potential energy resource, deposits in permafrost and marine sediment with large quantities. The current exploitation methods include depressurization, thermal stimulation, and inhibitor injection. However, many issues have to be resolved before the commercial production. In the present study, a 2-D axisymmetric simulator for gas production from hydrate reservoirs is developed. The simulator includes equations of conductive and convective heat transfer, kinetic of hydrate decomposi...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号