首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   6篇
地质学   11篇
海洋学   3篇
自然地理   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2018年   7篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.

Design of reinforced soil structures is greatly influenced by soil–geosynthetic interactions at interface which is normally assessed by costly and time consuming laboratory tests. In present research, using the results of large-scale direct shear tests conducted on soil–anchored geogrid samples a model for predicting Enhanced Interaction Coefficient (EIC) is proposed enabling researchers/engineers easily, quickly and at no cost to estimate soil–geosynthetic interactions. In this regard well and poorly graded sands, anchors of three different size and anchorage lengths from the shear surface together with normal pressures of 12.5, 25 and 50 kPa were used. Artificial Intelligence (AI) called the Gene Expression Programming (GEP) was adopted to develop the model. Input variables included coefficients of curvature and uniformity, normal pressure, effective grain size, anchor base and surface area, anchorage length and the output variable was EIC. Contributions of input variables were evaluated using sensitivity analysis. Excellent correlation between the GEP-based model and the experimental results were achieved showing that the proposed model is well capable of effectively estimating soil–anchored geogrid enhanced interaction coefficient. Sensitivity analysis for parameter importance shows that the most influential variables are normal pressure (σn) and anchorage length (L) and the least effective parameters are average particle size (D50) and anchor base area (Ab).

  相似文献   
2.
Geotechnical and Geological Engineering - Due to undesired mechanical characteristics, some forest soils cause problems in road construction. Several methods have been proposed for stabilizing...  相似文献   
3.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   
4.
Though it is well known that vegetation affects the water balance of soils through canopy interception and evapotranspiration, its hydrological contribution to soil hydrology and stability is yet to be fully quantified. To improve understanding of this hydrological process, soil water dynamics have been monitored at three adjacent hillslopes with different vegetation covers (deciduous tree cover, coniferous tree cover, and grass cover), for nine months from December 2014 to September 2015. The monitored soil moisture values were translated into soil matric suction (SMS) values to facilitate the analysis of hillslope stability. Our observations showed significant seasonal variations in SMS for each vegetation cover condition. However, a significant difference between different vegetation covers was only evident during the winter season where the mean SMS under coniferous tree cover (83.6 kPa) was significantly greater than that under grass cover (41 kPa). The hydrological reinforcing contribution due to matric suction was highest for the hillslope with coniferous tree cover, while the hillslope with deciduous tree cover was second and the hillslope with grass cover was third. The greatest contributions for all cover types were during the summer season. During the winter season, the wettest period of the monitoring study, the additional hydrological reinforcing contributions provided by the deciduous tree cover (1.5 to 6.5 kPa) or the grass cover (0.9 to 5.4 kPa) were insufficient to avoid potential slope failure conditions. However, the additional hydrological reinforcing contribution from the coniferous tree cover (5.8 to 10.4 kPa) was sufficient to provide potentially stable hillslope conditions during the winter season. Our study clearly suggests that during the winter season the hydrological effects from both deciduous tree and grass covers are insufficient to promote slope stability, while the hydrological reinforcing effects from the coniferous tree cover are sufficient even during the winter season. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
5.
Developing countries must consider the influence of anthropogenic dynamics on changes in rangeland habitats. This study explores happened degradation in 178 rangeland management plans for Northeast Iran in three main steps: (1) conducting a trend analysis of rangeland degradation and anthropogenic dynamics in 1986-2000 and 2000-2015, (2) visualizing the effects of anthropogenic drivers on rangeland degradation using bivariate local spatial autocorrelation (BiLISA), and (3) quantifying spatial dependence between anthropogenic driving forces and rangeland degradation using spatial regression approaches. The results show that 0.77% and 0.56% of rangelands are degraded annually during the first and second periods. The BiLISA results indicate that dry-farming, irrigated farming and construction areas were significant drivers in both periods and grazing intensity was a significant driver in the second period. The spatial lag (SL) model (wi=0.3943, Ei=1.4139) with two drivers of dry-farming and irrigated farming in the first period and the spatial error (SE) model (wi=0.4853, Ei=1.515) with livestock density, dry-farming and irrigated farming in the second period showed robust performance in quantifying the driving forces of rangeland degradation. To conclude, the BiLISA maps and spatial models indicate a serious intensification of the anthropogenic impacts of ongoing conditions on the rangelands of northeast Iran in the future.  相似文献   
6.
7.
This paper is devoted to the stability analysis of a vertical embankment in reinforced soil, assuming that a very large number of reinforcements are periodically distributed throughout the soil mass. The reinforced soil is modelled as a homogeneous medium that obeys a macroscopic yield condition. Two numerical formulations of the homogenized problem, derived from the lower and upper bound theorems of limit analysis, respectively, with a finite element discretization technique, are described. They both lead to a linear programming problem, which is carried out by means of XPRESS industrial LP code. The practical implementation of both the static and kinematic finite element programs on the case of a vertical reinforced earth wall results in close estimates of its failure height, which are in good agreement with available experimental data. This points to the ability of such programs to provide a rigorous evaluation of the limit loads of structures through the determination of lower bound and upper bound estimates sufficiently close to each other.  相似文献   
8.
Abstract

Soil erosion and eroded sediment are serious threats to sound land management. However, less attention has been given to quantifying the importance of different soil erosion features based on appropriate control measures that could be designated. Accordingly, this research was planned to quantify the contribution of potential sediment sources, i.e. sheet, rill and gully erosion, in Idelo watershed in Zanjan Province, Iran, using composite fingerprinting. Toward this aim, 16 geochemical and organic tracers were detected in sediment sources and sediment deposited at the outlet. The results of applying the composite fingerprinting technique, with a relative error of 16%, showed that sheet, rill and gully sources contributed 56%, 44% and 0%, respectively, to sediment yield. It was also apparent from the results that the composite fingerprinting approach could be successfully utilized to assess the provenance of sediment deposited at the main outlet of the study watershed by soil erosion type.

Editor Z.W. Kundzewicz  相似文献   
9.
Several methods are used to improve mechanical properties of loose soils including rewetting, soil replacement, compaction control, chemical additives, moisture control, thermal methods, and more recently, discrete fibers. All the methods are applied to soft soil to increase load bearing capacity and to improve other properties such as prevention of erosion and dust generation. In the present study, a new method of soil improvement using both discrete polypropylene (PP) fibers and polyvinyl acetate (PVAc) is introduced. The method is applied to improve load bearing capacity of a problematic sandy soil in both dry and saturated states. Based on the results from CBR tests on various specimens, it has been revealed that the combination of PP fiber and PVAc resin with weight percentages of 0.1 and 0.6 %, respectively, had the optimum effect in increasing the CBR value in both saturated and dry soil specimens. It should be mentioned that this method has caused a great increase in the CBR value in the saturated soil.  相似文献   
10.
Satellite remote sensing provides important observational constraints for monitoring dust life cycle and improving the understanding of its effects on local to global scales. The present work analyzes the dust aerosol patterns over the arid environment of the Sistan region in southeastern Iran, by means of multiple satellite platforms aiming to reveal the spatio-temporal distribution and trends. The dataset includes records of Aerosol Index (AI) from Total Ozone Mapping Spectrometer (TOMS) (1978–2001) and 6-year AI records from the Ozone Monitoring Instrument (OMI) aboard Aura. Moreover, the aerosol optical depth is analyzed through 11-year records from Multi-angle Imaging Spectroradiometer (MISR) aboard Terra (2000–2010) and from Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra (2000–2007) and Aqua (2002–2011). The main focus is to determine the similarities and differences in dust variability over southwest Asia, in general, and the Sistan region, in particular. The results show a marked seasonal cycle with high aerosol loading during summer and lower in winter, while MISR, MODIS, and TOMS/OMI observations agree in both terms of monthly and seasonally mean spatial and temporal patterns. The higher aerosol concentrations during summer are interpreted as a result of the combined effect of the seasonal drying of the Hamoun lakes and the strong northerly Levar winds favoring dust erosion from the alluvial deposits in Sistan. After prolonged drought period, the dust aerosol load over the area has increased in the beginning of the 2000 s and decreased after 2004, thereby leading to an overall declining trend during the last decade. Such a trend is absent during the winter period when dust emission over the region is minimal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号