首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   

2.
In this work, we used the Regional Hydro‐Ecological Simulation System (RHESSys) model to examine runoff sensitivity to land cover changes in a mountain environment. Two independent experiments were evaluated where we conducted simulations with multiple vegetation cover changes that include conversion to grass, no vegetation cover and deciduous/coniferous cover scenarios. The model experiments were performed at two hillslopes within the Weber River near Oakley, Utah watershed (USGS gauge # 10128500). Daily precipitation, air temperature and wind speed data as well as spatial data that include a digital elevation model with 30 m grid resolution, soil texture map and vegetation and land use maps were processed to drive RHESSys simulations. Observed runoff data at the watershed outlet were used for calibration and verification. Our runoff sensitivity results suggest that during winter, reduced leaf area index (LAI) decreases canopy interception resulting in increased snow accumulations and hence snow available for runoff during the early spring melt season. Increased LAI during the spring melt season tends to delay the snow melting process. This delay in snow melting process is due to reduced radiation beneath high LAI surfaces relative to low LAI surfaces. The model results suggest that annual runoff yield after removing deciduous vegetation is on average about 7% higher than with deciduous vegetation cover, while annual runoff yield after removing coniferous vegetation is on average as about 2% higher than that produced with coniferous vegetation cover. These simulations thus help quantify the sensitivity of water yield to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Surface mining in the Elk Valley, British Columbia, involves removing vegetation, soil, and rock to access underlying metallurgical coal. Subsequent waste rock is placed into adjacent valleys, frequently burying headwater streams. Due to their coarse texture, waste rock piles increase infiltration and percolation, increasing solute transport and concentration of geochemicals in downstream surface waters. Previous research suggests that weathering solutes are transport limited, and it is hypothesized that revegetation will enhance evapotranspiration (ET) and reduce percolation through the waste rock, potentially reducing loading. This study examined the surface‐atmosphere water and energy exchanges using the eddy covariance technique for three waste rock surfaces with different levels of reclamation: (a) an ~25‐year‐old mixed coniferous forest, (b) a grass site, and (c) bare waste rock. Measurements were taken from May to October in 2013 and 2014. Soil moisture and matric suction were measured to 1‐m depth. Sap flow at the forested site was measured to partition transpiration from total ET. In all years, ET rates were greatest at the forested site, followed by the grass cover and lowest at the bare waste rock site. Growing season ET rates at the forest were 56% higher than grass in 2013 and 35% higher in 2014. At the vegetated sites, climate was the main driver of ET, with high radiation, and warm and dry conditions enhancing fluxes. Maximum ET at these sites corresponded with peak growing season, with vegetation increasing both transpiration and rainfall interception. At the bare rock site, ET was weakly related to atmospheric conditions, and ET rates briefly increased during periods following rainfall when near‐surface soil moisture was enhanced. Transpiration comprised 29% of overall ET at the forest site from late July to early October. Results suggest that vegetation establishment can be incorporated into mine reclamation plans to enhance ET rates and limit percolation, potentially reducing downstream geochemical loads.  相似文献   

4.
Monitoring runoff generation processes in the field is a prerequisite for developing conceptual hydrological models and theories. At the same time, our perception of hydrological processes strongly depends on the spatial and temporal scale of observation. Therefore, the aim of this study is to investigate interactions between runoff generation processes of different spatial scales (plot scale, hillslope scale, and headwater scale). Different runoff generation processes of three hillslopes with similar topography, geology and soil properties, but differences in vegetation cover (grassland, coniferous forest, and mixed forest) within a small v‐shaped headwater were measured: water table dynamics in wells with high spatial and temporal resolution, subsurface flow (SSF) of three 10 m wide trenches at the bottom of the hillslopes subdivided into two trench sections each, overland flow at the plot scale, and catchment runoff. Bachmair et al. ( 2012 ) found a high spatial variability of water table dynamics at the plot scale. In this study, we investigate the representativity of SSF observations at the plot scale versus the hillslope scale and vice versa, and the linkage between hillslope dynamics (SSF and overland flow) and streamflow. Distinct differences in total SSF within each 10 m wide trench confirm the high spatial variability of the water table dynamics. The representativity of plot scale observations for hillslope scale SSF strongly depends on whether or not wells capture spatially variable flowpaths. At the grassland hillslope, subsurface flowpaths are not captured by our relatively densely spaced wells (3 m), despite a similar trench flow response to the coniferous forest hillslope. Regarding the linkage between hillslope dynamics and catchment runoff, we found an intermediate to high correlation between streamflow and hillslope hydrological dynamics (trench flow and overland flow), which highlights the importance of hillslope processes in this small watershed. Although the total contribution of SSF to total event catchment runoff is rather small, the contribution during peak flow is moderate to substantial. Additionally, there is process synchronicity between spatially discontiguous measurement points across scales, potentially indicating subsurface flowpath connectivity. Our findings stress the need for (i) a combination of observations at different spatial scales, and (ii) a consideration of the high spatial variability of SSF at the plot and hillslope scale when designing monitoring networks and assessing hydrological connectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
It is critical to understand and quantify the temporal and spatial variability in hillslope hydrological data in order to advance hillslope hydrological studies, evaluate distributed parameter hydrological models, analyse variability in hydrological response of slopes and design efficient field data sampling networks. The spatial and temporal variability of field‐measured pore‐water pressures in three residual soil slopes in Singapore was investigated using geostatistical methods. Parameters of the semivariograms, namely the range, sill and nugget effect, revealed interesting insights into the spatial structure of the temporal situation of pore‐water pressures in the slopes. While informative, mean estimates have been shown to be inadequate for modelling purposes, indicator semivariograms together with mean prediction by kriging provide a better form of model input. Results also indicate that significant temporal and spatial variability in pore‐water pressures exists in the slope profile and thereby induces variability in hydrological response of the slope. Spatial and temporal variability in pore‐water pressure decreases with increasing soil depth. The variability decreases during wet conditions as the slope approaches near saturation and the variability increases with high matric suction development following rainfall periods. Variability in pore‐water pressures is greatest at shallow depths and near the slope crest and is strongly influenced by the combined action of microclimate, vegetation and soil properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this study was to investigate how the spatial distribution of grass influenced run-off and erosion from a hillslope with loess and cinnamon soils in the rocky area of Northern China. We set up a trial to test the two soils with different treatments, including bare soil (BS), grass strips on the upper (UGS) and lower (DGS) parts of the slope, grass cover over the entire slope (GS), and a grass carpet on the lower part of the slope (GC), under simulated rainfall conditions. The results showed that the run-off coefficients for the loess and cinnamon soils decreased by between 4% and 20% and by between 2% and 37%, respectively, when covered with grass. Grass spatial distribution had little effect on the run-off, but more effect on erosion than vegetation coverage degree. The most effective location of grass cover for decreasing hillslope erosion was at the foot, and the high efficiency was mainly due to controlling of rill formation and sediment deposition. The soil loss from GS, DGS, and GC on the loess and cinnamon soils was between 77% and 93% less and 55% and 80% less, respectively, compared with the loss from BS. However, the soil characteristics had little effect on soil erosion for well-vegetated slopes. The results highlight the importance of vegetation re-establishment at the foot of hillslope in controlling soil erosion.  相似文献   

7.
Water infiltration rate and hydraulic conductivity in vegetated soil are two vital hydrological parameters for agriculturists to determine availability of soil moisture for assessing crop growths and yields, and also for engineers to carry out stability calculations of vegetated slopes. However, any effects of roots on these two parameters are not well‐understood. This study aims to quantify the effects of a grass species, Cynodon dactylon, and a tree species, Schefflera heptaphylla, on infiltration rate and hydraulic conductivity in relation to their root characteristics and suction responses. The two selected species are commonly used for ecological restoration and rehabilitation in many parts of the world and South China, respectively. A series of in‐situ double‐ring infiltration tests was conducted during a wet summer, while the responses of soil suction were monitored by tensiometers. When compared to bare soil, the vegetated soil has lower infiltration rate and hydraulic conductivity. This results in at least 50% higher suction retained in the vegetated soil. It is revealed that the effects of root‐water uptake by the selected species on suction were insignificant because of the small evapotranspiration (<0.2 mm) when the tests were conducted under the wet climate. There appears to have no significant difference (less than 10%) of infiltration rates, hydraulic conductivity and suction retained between the grass‐covered and the tree‐covered soil. However, the grass and tree species having deeper root depth and greater Root Area Index (RAI) retained higher suction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Soil moisture is a key process in the hydrological cycle. During ecological restoration of the Loess Plateau, soil moisture status has undergone important changes, and infiltration of soil moisture during precipitation events is a key link affecting water distribution. Our study aims to quantify the effects of vegetation cover, rainfall intensity and slope length on total infiltration and the spatial variation of water flow. Infiltration data from the upper, middle and lower slopes of a bare slope, a natural grassland and an artificial shrub grassland were obtained using a simulated rainfall experiment. The angle of the study slope was 15° and rainfall intensity was set at 60, 90, 120, 150, and 180 mm/hr. The effect these factors have on soil moisture infiltration was quantified using main effect analysis. Our results indicate that the average infiltration depth (ID) of a bare slope, a grassland slope and an artificial shrub grassland slope was 46.7–73.3, 60–80, and 60–93.3 cm, respectively, and average soil moisture storage increment was 3.5–5.7, 5.0–9.4, and 5.7–10.2 mm under different rainfall intensities, respectively. Heavy rainfall intensity and vegetation cover reduced the difference of soil infiltration in the 0–40 cm soil layer, and rainfall intensity increased surface infiltration differences on the bare slope, the grassland slope and the artificial shrub grassland slope. Infiltration was dominated by rainfall intensity, accounting for 63.03–88.92%. As rainfall continued, the contribution of rainfall intensity to infiltration gradually decreased, and the contribution of vegetation cover and slope length to infiltration increased. The interactive contribution was: rainfall intensity * vegetation cover > vegetation cover * slope length > rainfall * slope length. In the grass and shrub grass slopes, lateral flow was found at a depth of 23–37 cm when the slope length was 5–10 m, this being related to the difference in soil infiltration capacity between different soil layers formed by the spatial cross-connection of roots.  相似文献   

9.
Hillslopes turn precipitation into runoff and thus exert important controls on various Earth system processes. It remains difficult to collect reliable data necessary for understanding and modeling these Earth system processes in real catchments. To overcome this problem, controlled experiments are being conducted at the Landscape Evolution Observatory at Biosphere 2, The University of Arizona. Previous experiments have revealed differences in hydrological response between 2 landscapes within Landscape Evolution Observatory, even though both landscapes were designed to be identical. In an attempt to discover where the observed differences stem from, we use a fully 3‐dimensional hydrological model (CATchment HYdrology) to show the effect of soil water retention characteristics and saturated hydraulic conductivity on the hydrological response of these 2 hillslopes. We also show that soil water retention characteristics can be derived at hillslope scale from experimental observations of soil moisture and matric potential. It is found that differences in soil packing between the 2 landscapes may be responsible for the observed differences in hydrological response. This modeling study also suggests that soil water retention characteristics and saturated hydraulic conductivity have a profound effect on rainfall–runoff processes at hillslope scale and that parametrization of a single hillslope may be a promising step in modeling rainfall–runoff response in real catchments.  相似文献   

10.
Vegetation evapotranspiration (ET) induced soil water suction reduces hydraulic conductivity and increases shear strength of slopes. Several field studies have been conducted to investigate suction distribution in vegetated slopes. However, these studies were conducted on natural slopes, which are prone to heterogeneity in vegetation and soil conditions. Moreover, studies quantifying the effect of different vegetation species, root characteristics (root depth and root area index) and transpiration reduction function (Trf) on suction in slopes under natural variation are rare. This study investigated the suction distribution and root characteristics in recompacted slopes vegetated with two different species, i.e. Cynodon dactylon (Bermuda grass) and Schefflera heptaphylla (ivy tree). Bare slope served as a control. Suction distributions during different seasons and rainfall events were monitored. It is found that during the dry season, slope vegetated with young Schefflera heptaphylla seedlings have substantially higher suction within the root zone compared with bare slope and slope vegetated with Cynodon dactylon. This is because Schefflera heptaphylla has a higher root biomass, Trf and ET than Cynodon dactylon. It was also found that suctions within root zones of vegetated slopes and bare slope were completely destroyed under rainfall events corresponding to 2 years and 20 years return period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In Mediterranean regions, hillslopes are generally considered to be a mosaic of sink and source areas that control runoff generation and water erosion processes. These hillslopes used to be characterized by a complex hydrological and erosive response combining Hortonian and saturation excess overland flows. The hydrological response of soils is highly dependent on the soil surface components (e.g. vegetation patches, bare soil, rock fragment cover, crusts), which each one of them is dominated by a certain hydrological process. One of these soil surface components, not widely considered in studies of soil hydrology under Mediterranean conditions, is the accumulation of litter beneath shrubs enhancing water repellency in soils. This study investigates the influence of soil surface components, especially the litter accumulated beneath Cistus spp., in the hydrological and erosive responses of soils on two Mediterranean hillslopes having different exposures. The study was performed by means of rainfall simulation experiments and the Water Drop Penetration Time for measuring water repellency of soils, both techniques being carried out at the end of summer (September 2010) with very dry soils. The results indicate that (i) soil surface components from the north facing hillslope are characterized by a more uniform hydrological and erosive response than those from the south‐facing ones; (ii) the water repellency is more influential on the hydrological response of the north‐facing hillslope due to a greater accumulation of organic rest on the soils as the vegetation cover is also higher; (iii) the south‐facing hillslope seemed to follow the fertility island theory with very degraded bare soil areas, which are the most generated areas of runoff and mobilized sediments; (iv) the experimental area can be considered as a threshold area between the semiarid and subhumid Mediterranean environments, with the south‐facing hillslope being comparable with the former and the north facing one with the latter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the controls of vegetation on runoff and erosion dynamics in the dryland environment of Jornada, New Mexico, USA. As the American southwest has seen significant shifts in the dominant vegetation species in the past 150 years, an understanding of the vegetation effects on hydrological and erosional processes is vital for understanding and managing environmental change. Small‐scale rainfall simulations were carried out to identify the hydrological and erosional processes resulting from the grassland and shrubland vegetation species. Results obtained using tree‐regression analysis suggested that the primary vegetation control on runoff and erosion is the shrub type and canopy density, which directly affects the local microtopographic gradient of mounds beneath the shrubs. Significant interactions and feedbacks were found to occur among the local mound gradient, crust cover, soil aggregate stability and antecedent soil moisture between the different vegetation species for both the runoff and erosion responses. Although some of the shrub species were found to produce higher sediment yields than the grass species, the distinguishing feature of the grassland was the significantly higher enrichment in the fine sediment fraction compared to all other surface cover types. This enrichment in fines has important implications for nutrient movement in such environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Despite the potential impact of winter soil water movements in cold regions, relatively few field studies have investigated cold‐season hydrological processes that occur before spring‐onset of snowmelt infiltration. The contribution of soil water fluxes in winter to the annual water balance was evaluated over 5 years of field observations at an agricultural field in Tokachi, Hokkaido, Japan. In two of the winters, soil frost reached a maximum depth of 0·2 m (‘frozen’ winters), whereas soil frost was mostly absent during the remaining three winters (‘unfrozen’ winters). Significant infiltration of winter snowmelt water, to a depth exceeding 1·0 m, occurred during both frozen and unfrozen winters. Such infiltration ranged between 126 and 255 mm, representing 28–51% of total annual soil water fluxes. During frozen winters, a substantial quantity of water (ca 40 mm) was drawn from deeper layers into the 0–0·2 m topsoil layer when this froze. Under such conditions, the progression and regression of the freezing front, regulated by the thickness of snow cover, controlled the quantity of soil water flux below the frozen layer. During unfrozen winters, 13–62 mm of water infiltrated to a depth of 0·2 m, before the spring snowmelt. These results indicate the importance of correctly evaluating winter soil water movement in cold regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Vegetation is known to influence the hydrological state variables, suction \( \left( \psi \right) \) and volumetric water content (\( \theta_{w} \)) of soil. In addition, vegetation induces heterogeneity in the soil porous structure and consequently the relative permeability (\( k_{r} \)) of water under unsaturated conditions. The indirect method of utilising the soil water characteristic curve (SWCC) is commonly adopted for the determination of \( k_{r} \). In such cases, it is essential to address the stochastic behaviour of SWCC, in order to conduct a robust analysis on the \( k_{r} \) of vegetative cover. The main aim of this study is to address the uncertainties associated with \( k_{r} \), using probabilistic analysis, for vegetative covers (i.e., grass and tree species) with bare cover as control treatment. We propose two approaches to accomplish the aforesaid objective. The univariate suction approach predicts the probability distribution functions of \( {\text{k}}_{\text{r}} \), on the basis of identified best probability distribution of suction. The bivariate suction and water content approach deals with the bivariate modelling of the water content and suction (SWCC), in order to capture the randomness in the permeability curves, due to presence of vegetation. For this purpose, the dependence structure of \( \psi \) and \( \theta_{w} \) is established via copula theory, and the \( k_{r} \) curves are predicted with respect to varying levels of \( \psi - \theta_{w} \) correlation. The results showed that the \( k_{r} \) of vegetative covers is substantially lower than that in bare covers. The reduction in \( k_{r} \) with drying is more in tree cover than grassed cover, since tree roots induce higher levels of suction. Moreover, the air entry value of the soil depends on the magnitude of \( \psi - \theta_{w} \) correlation, which in turn, is influenced by the type of vegetation in the soil. \( k_{r} \) is found to be highly uncertain in the desaturation zone of the relative permeability curve. The stochastic behaviour of \( k_{r} \) is found to be most significant in tree covers. Finally, a simplified case study is also presented in order to demonstrate the impact of the uncertainty in \( k_{r} \), on the stability of vegetates slopes. With an increment in the parameter \( \alpha \), factor of safety (FS) is found to decrease. The trend of FS is reverse of this with parameter \( n \). Overall FS is found to vary around 4–5%, for both bare and vegetative slopes.  相似文献   

15.
Information on the main drivers of subsurface flow generation on hillslopes of alpine headwater catchments is still missing. Therefore, the dominant factors controlling the water table response to precipitation at the hillslope scale in the alpine Bridge Creek Catchment, Northern Italy, were investigated. Two steep hillslopes of similar size, soil properties and vegetation cover but contrasting topography were instrumented with 24 piezometric wells. Sixty‐three (63) rainfall‐runoff events were selected over three years in the snow‐free months to analyse the influence of rainfall depth, antecedent moisture conditions, hillslope topographic characteristics and soil depth on shallow water table dynamics. Piezometric response, expressed as percentage of well activation and water peak magnitude, was strongly correlated with soil moisture status, as described by an index combining antecedent soil moisture and rainfall depth. Hillslope topography was found to be a dominant control only for the convex‐divergent hillslope and during wet conditions. Timing of water table response depended primarily on soil depth and topographic position, with piezometric peak response occurring later and showing a greater temporal variability at the hillslope bottom, characterized by thicker soil. The relationship between mean hillslope water table level and standard deviation for all wells reflected the timing of the water table response at the different locations along the hillslopes. The outcomes of this research contribute to a better understanding of the controls on piezometric response at the hillslope scale in steep terrain and its role on the hydrological functioning of the study catchment and of other sites with similar physiographic characteristics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A general trend of decreasing soil loss rates with increasing vegetation cover fraction is widely accepted. Field observations and experimental work, however, show that the form of the cover‐erosion function can vary considerably, in particular for low cover conditions that prevail on arid and semiarid hillslopes. In this paper the structured spatial distribution of the vegetation cover and associated soil attributes is proposed as one of the possible causes of variation in cover–erosion relationships, in particular in dryland environments where patchy vegetation covers are common. A simulation approach was used to test the hypothesis that hillslope discharge and soil loss could be affected by variation in the spatial correlation structure of coupled vegetation cover and soil patterns alone. The Limburg Soil Erosion Model (LISEM) was parameterized and verified for a small catchment with discontinuous vegetation cover at Rambla Honda, SE Spain. Using the same parameter sets LISEM was subsequently used to simulate water and sediment fluxes on 1 ha hypothetical hillslopes with simulated spatial distributions of vegetation and soil parameters. Storms of constant rainfall intensity in the range of 30–70 mm h?1 and 10–30 min duration were applied. To quantify the effect of the spatial correlation structure of the vegetation and soil patterns, predicted discharge and soil loss rates from hillslopes with spatially structured distributions of vegetation and soil parameters were compared with those from hillslopes with spatially uniform distributions. The results showed that the spatial organization of bare and vegetated surfaces alone can have a substantial impact on predicted storm discharge and erosion. In general, water and sediment yields from hillslopes with spatially structured distributions of vegetation and soil parameters were greater than from identical hillslopes with spatially uniform distributions. Within a storm the effect of spatially structured vegetation and soil patterns was observed to be highly dynamic, and to depend on rainfall intensity and slope gradient. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Soil moisture is an important variable in explaining hydrological processes at hillslope scale. The distribution of soil moisture along a hillslope is related to the spatial distribution of the soil properties, the topography, the soil depth, and the vegetation. In order to investigate the factors affecting soil moisture, various environmental data were collected from a humid forest hillslope in this study. Several factors (the wetness index; the contributing area; the local slope; the soil depth; the composition of sand, silt, and clay; the scaling parameter; the hydraulic conductivity; the tree diameter at breast height; and the total weighted basal area) were evaluated for their effect on soil moisture and its distribution over the hillslope at depths of 10, 30, and 60 cm. Both linear correlation analysis and empirical orthogonal function analysis indicated that the soil texture was a dominant factor in soil moisture distribution. The impact of soil hydraulic conductivity was important for all soil moisture ranges at a depth of 30 cm, but those at 10 and 60 cm were limited to very wet and dry conditions, respectively. The relationships of the various factors with the spatial variability of soil moisture indicated the existence of a threshold soil moisture that is related to the composition of the soil and the factors related to the distribution of water in the study area.  相似文献   

18.
Connectivity has recently emerged as a key concept for understanding hydrological response to vegetation change in semi‐arid environments, providing an explanatory link between abiotic and biotic, structure and function. Reduced vegetation cover following woody encroachment, generally promotes longer, more connected overland flow pathways, which has the potential to result in an accentuated rainfall‐runoff response and fluxes of both soil erosion and carbon. This paper investigates changing hydrological connectivity as an emergent property of changing ecosystem structure over two contrasting semi‐arid grass to woody vegetation transitions in New Mexico, USA. Vegetation structure is quantified to evaluate if it can be used to explain observed variations in water, sediment and carbon fluxes. Hydrological connectivity is quantified using a flow length metric, combining topographic and vegetation cover data. Results demonstrate that the two woody‐dominated sites have significantly longer mean flowpath lengths (4 · 3 m), than the grass‐dominated sites (2 · 4 m). Mean flowpath lengths illustrate a significant positive relationship with the functional response. The woody‐dominated sites lost more water, soil and carbon than their grassland counterparts. Woody sites erode more, with mean event‐based sediment yields of 1203 g, compared to 295 g from grasslands. In addition, the woody sites lost more organic carbon, with mean event yields of 39 g compared to 5 g from grassland sites. Finally, hydrological connectivity (expressed as mean flowpath length) is discussed as a meaningful measure of the interaction between structure and function and how this manifests under the extreme rainfall that occurs in semi‐arid deserts. In combination with rainfall characteristics, connectivity emerges as a useful tool to explain the impact of vegetation change on water, soil and carbon losses across semi‐arid environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Hydraulic redistribution defined as the translocation of soil moisture by plant root systems in response to water potential gradients is a phenomenon widely documented in different climate, vegetation, and soil conditions. Past research has largely focused on hydraulic redistribution in deep tree roots with access to groundwater and/or winter rainfall, while the case of relatively shallow (i.e., ≈1–2 m deep) tree roots has remained poorly investigated. In fact, it is not clear how hydraulic redistribution in shallow root zones is affected by climate, vegetation, and soil properties. In this study, we developed a model to investigate the climate, vegetation, and soil controls on the net direction and magnitude of hydraulic redistribution in shallow tree root systems at the growing season to yearly timescale. We used the model to evaluate the effect of hydraulic redistribution on the water stress of trees and grasses. We found that hydraulic lift increases with decreasing rainfall frequency, depth of the rooting zone, root density in the deep soil and tree leaf area index; at the same time for a given rainfall frequency, hydraulic lift increases with increasing average rainstorm depth and soil hydraulic conductivity. We propose that water drainage into deeper soil layers can lead to the emergence of vertical water potential gradients sufficient to explain the occurrence of hydraulic lift in shallow tree roots without invoking the presence of a shallow water table or winter precipitation. We also found that hydraulic descent reduces the water stress of trees and hydraulic lift reduces the water stress of grass with important implications on tree–grass interactions.  相似文献   

20.
Vegetation cover pattern is one of the factors controlling hydrological processes. Spatially distributed models are the primary tools previously applied to document the effect of vegetation cover patterns on runoff and soil erosion. Models provide precise estimations of runoff and sediment yields for a given vegetation cover pattern. However, difficulties in parameterization and the problematic explanation of the causes of runoff and sedimentation rates variation weaken prediction capability of these models. Landscape pattern analysis employing pattern indices based on runoff and soil erosion mechanism provides new tools for finding a solution. In this study, the vegetation cover pattern was linked with runoff and soil erosion by two previously developed pattern indices, which were modified in this study, the Directional Leakiness Index (DLI) and Flowlength. Although they use different formats, both indices involve connectivity of sources areas (interpatch bare areas). The indices were revised by bringing in the functional heterogeneity of the plant cover types and the landscape position. Using both artificial and field verified vegetation cover maps, observed runoff and sediment production on experiment plots, we tested the indices’ efficiency and compared the indices with their antecedents. The results illustrate that the modified indices are more effective in indicating runoff at the plot/hillslope scale than their antecedents. However, sediment export levels are not provided by the modified indices. This can be attributed to multi-factor interaction on the hydrological process, the feedback mechanism between the hydrological function of cover patterns and threshold phenomena in hydrological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号