首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
测绘学   1篇
大气科学   1篇
地球物理   7篇
地质学   10篇
海洋学   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2009年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated δ34Ssulfide (3.7 to 12.7‰). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high δ34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (∼400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ∼300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5‰) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 × 1012 g seawater S yr−1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.  相似文献   
2.
The historical tsunamis in the Marmara Seawere mainly caused by earthquakes andneeded to be documented. Following 1999Izmit earthquake occurred at the EasternMarmara region, a complete inventory ofactive faults in the Marmara Sea regionbecame much more stressed. To the west, thelatest event is 09.08.1912arköy-Mürefte Earthquake. Itoccurred on the active Ganos Fault zone andwas one of the largest earthquakes in theBalkans. The eastern termination of theassociated faulting is in the deep WestMarmara Trough, westernmost of thesuccessive basins forming the Marmara Sea.On the basis of recent multibeam bathymetryand seismic reflection data, estimatedtotal length of the surface rupture isabout 56 km. The historical data reviewedfrom library and archive documents,geological field surveys and offshoregeophysical investigations have shown thatthe 1912 earthquake produced a tsunami. Inaddition a seabed dislocation, the sourceof 1912 tsunami can also be assigned to thesediment slumps appearing in the form ofechelon landslide prisms along the southernslopes of the West Marmara Trough.  相似文献   
3.
Within the Tethyan realm, data for the subduction history of the Permo–Triassic Tethys in the form of accretionary complexes are scarce, coming mainly from northwest Turkey and Tibet. Herein we present field geological, petrological and geochronological data on a Triassic accretionary complex, the A?vanis metamorphic rocks, from northeast Turkey. The A?vanis metamorphic rocks form a SSE–NNW trending lozenge‐shaped horst, ~20 km long and ~6 km across, bounded by the strands of the active North Anatolian Fault close to the collision zone between the Eastern Pontides and the Menderes–Taurus Block. The rocks consist mainly of greenschist‐ to epidote‐amphibolite‐facies metabasite, phyllite, marble and minor metachert and serpentinite, interpreted as a metamorphic accretionary complex based on the oceanic rock types and ocean island basaltic, mid‐ocean ridge basaltic and island‐arc tholeiitic affinities of the metabasites. This rock assemblage was intruded by stocks and dikes of Early Eocene quartz diorite, leucogranodiorite and dacite porphyry. Metamorphic conditions are estimated to be 470–540°C and ~0.60–0.90 GPa. Stepwise 40Ar/39Ar dating of phengite–muscovite separates sampled outside the contact metamorphic aureoles yielded steadily increasing age spectra with the highest incremental stage corresponding to age values ranging from ~180 to 209 Ma, suggesting that the metamorphism occurred at ≥ 209 Ma. Thus, the A?vanis metamorphic rocks represent the vestiges of the Late Triassic or slightly older subduction in northeast Turkey. Estimated P–T conditions indicate higher temperatures than those predicted by steady state thermal models for average subduction zones, and can best be accounted for by a hot subduction zone, similar to the present‐day Cascadia. Contact metamorphic mineral assemblages around an Early Eocene quartz diorite stock, on the other hand, suggest that the present‐day erosion level was at depths of ~14 km during the Early Eocene, indicative of reburial of the metamorphic rocks. Partial disturbance of white‐mica Ar–Ar age spectra was probably caused by the reburial coupled with heat input by igneous activity, which is probably related to thrusting due to the continental collision between Eastern Pontides and the Menderes–Taurus Block.  相似文献   
4.
5.
In this paper we present control design methods that provide desirable levels of performance and simultaneously account for actuator and sensor reliability (or malfunction) for buildings under seismic excitations. Performance is defined in terms of the disturbance attenuation (i.e. L2 gain) from the disturbances to the controlled outputs of the system. The reliability of actuators and sensors refers to the deviation of actual control forces or actual sensor measurements from their ideal levels. Simulation results for a six‐storey building are used to demonstrate the effectiveness of the control analysis and design method presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
6.
A dock for an autonomous underwater vehicle (AUV) allows the vehicle to be left on station ready for deployment. However, it represents a significant engineering challenge, as docking requires an accurate navigation system so that the vehicle can find the dock, and complex mechanics to make the required underwater power and data connections. This paper describes the docking system built for the REMUS AUV. It outlines the basis for the design decisions, the as-built configuration, and its performance once deployed. It also delineates the lessons learned from the deployments, and the refinements in the vehicle that have been made since that time, that will improve the system's utility and reliability  相似文献   
7.
Two isolated metamorphic accretionary complexes of Jurassic age, the Refahiye and Kurtlutepe metamorphic rocks, crop out as tectonic slices within the coeval suprasubduction-zone ophiolite at the southern margin of the Eastern Pontides (NE Turkey), close to the ?zmir-Ankara-Erzincan suture. The Refahiye metamorphic rocks are made up of greenschist, marble, serpentinite, phyllite and minor garnet amphibolite, garnet micaschist and metachert. The whole unit was metamorphosed under garnet-amphibolite-facies conditions and strongly retrogressed during exhumation. The Kurtlutepe metamorphic rocks consist of subgreenschist-facies metavolcanics, metavolcaniclastics, marble, calc-phyllite, and minor serpentinite and metachert. Metabasites in the Refahiye metamorphic rocks are represented by four distinct geochemical affinities: (i) cumulate “flavor,” (ii) alkaline oceanic island basalt (OIB), (iii) enriched mid-ocean ridge basalt (E-MORB) and (iv) tholeiitic island arc basalt (IAB). On the other hand, the Kurtlutepe metavolcanic rocks display only tholeiitic to calc-alkaline island arc geochemical affinities. The metabasic rocks with OIB affinities were interpreted as parts of the accreted oceanic islands, and those with E-MORB affinities as parts of accreted ridge segments close to oceanic islands and/or plume-distal mid-ocean ridges with a mantle previously metasomatized by plume components. The metabasic rocks with IAB affinities might have been derived from the overlying suprasubduction ophiolite and/or arc domain by a number of tectonic or sedimentary processes including tectonic slicing of accretionary complex and overlying fore-arc ophiolite, juxtaposition of the magmatic arc with subduction zone by strike slip faults, submarine gravity sliding and debris flows or subduction erosion. However, totally recrystallized nature of the metabasic rocks together with field relations does not allow any inference on the processes involved. The Kurtlutepe metavolcanic rocks might represent collided and accreted oceanic island arc with the subduction zone. Attempted subduction of an intraoceanic island arc may also explain the magmatic lull during Late Jurassic–Early Cretaceous in the Eastern Pontides.  相似文献   
8.
A previous paper of the same title indicated the feasibility of the collection of oil by an open bottom collector above a blowout with a marine riser above the collector; the whole collection system being driven by gas lift from the blowout gas. That paper was based on small-scale laboratory experiments and it identified the salient dimensionless parameters governing those experiments. This paper describes laboratory experiments on a refinement of the collection system and also describes the results of intermediate scale experiments. The length scale of these experiments was about four times greater than laboratory scale and about one-fourth of full scale. Generally, the intermediate scale results are consistent with the laboratory predictions. Furthermore, two scale-dependent parameters have been identified. The effects of these have been included in an analysis of the results.  相似文献   
9.
The role of small‐scale (<10 km) habitat availability in structuring deep‐sea hard substratum assemblages is poorly understood. Epibenthic megafauna and substratum availability were studied on steep slopes at the Mid‐Atlantic Ridge from May to July 2010 northwest, northeast, southwest and southeast of the Charlie‐Gibbs Fracture Zone (CGFZ; 48–54°N) at between 2095 and 2601 m depth. Megafauna were six times denser north of the CGFZ compared with the south and differences in density were almost entirely driven by sessile fauna. There was no significant difference in habitat availability amongst sites. Rocky substratum made up 48% of the total area surveyed, with individual transects having between 0% and 82% rock. Assemblage structures were different amongst all superstations. The north was dominated by demospongids and hexactinellids, whereas the southern superstations were dominated by anthozoans and hexactinellids. Differences in megafaunal assemblages north and south of the CGFZ primarily reflected variations in demospongid and anthozoan species composition. With 213–1825 individuals·ha?1, and 7–24 species per superstation, hexactinellids were the most species‐rich (36 species) and cosmopolitan taxa at the study site, supporting observations elsewhere along the ridge and in the CGFZ. The absence of significant differences in substrata availability suggested alternative drivers for density or percentage cover. The amount of hard substratum available only limited sessile megafauna density at one transect that was entirely covered with sediments. Species richness was highest for areas with intermediate values of substratum coverage (35–43% rock).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号