首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
  国内免费   4篇
测绘学   5篇
地球物理   14篇
地质学   51篇
海洋学   4篇
天文学   16篇
自然地理   4篇
  2019年   4篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2011年   2篇
  2010年   8篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
2.
The voluminous 2.5 Ga banded iron formations (BIFs) from the Hamersley Basin (Australia) and Transvaal Craton (South Africa) record an extensive period of Fe redox cycling. The major Fe-bearing minerals in the Hamersley-Transvaal BIFs, magnetite and siderite, did not form in Fe isotope equilibrium, but instead reflect distinct formation pathways. The near-zero average δ56Fe values for magnetite record a strong inheritance from Fe3+ oxide/hydroxide precursors that formed in the upper water column through complete or near-complete oxidation. Transformation of the Fe3+ oxide/hydroxide precursors to magnetite occurred through several diagenetic processes that produced a range of δ56Fe values: (1) addition of marine hydrothermal , (2) complete reduction by bacterial dissimilatory iron reduction (DIR), and (3) interaction with excess that had low δ56Fe values and was produced by DIR. Most siderite has slightly negative δ56Fe values of ∼ −0.5‰ that indicate equilibrium with Late Archean seawater, although some very negative δ56Fe values may record DIR. Support for an important role of DIR in siderite formation in BIFs comes from previously published C isotope data on siderite, which may be explained as a mixture of C from bacterial and seawater sources.Several factors likely contributed to the important role that DIR played in BIF formation, including high rates of ferric oxide/hydroxide formation in the upper water column, delivery of organic carbon produced by photosynthesis, and low clastic input. We infer that DIR-driven Fe redox cycling was much more important at this time than in modern marine systems. The low pyrite contents of magnetite- and siderite-facies BIFs suggests that bacterial sulfate reduction was minor, at least in the environments of BIF formation, and the absence of sulfide was important in preserving magnetite and siderite in the BIFs, minerals that are poorly preserved in the modern marine record. The paucity of negative δ56Fe values in older (Early Archean) and younger (Early Proterozoic) BIFs suggests that the extensive 2.5 Ga Hamersley-Transvaal BIFs may record a period of maximum expansion of DIR in Earth’s history.  相似文献   
3.
Beard  James S. 《Journal of Petrology》2008,49(5):1027-1041
If a magma is a hybrid of two (or more) isotopically distinctend-members, at least one of which is partially crystalline,separation of melt and crystals after hybridization will leadto the development of isotopic heterogeneities in the magmaas long as some of the pre-existing crystalline material (antecrysts)retains any of its original isotopic composition. This holdstrue whether the hybridization event is magma mixing as traditionallyconstrued, bulk assimilation, or melt assimilation. Once a magma-scaleisotopic heterogeneity is formed by crystal–melt separation,it is essentially permanent, persisting regardless of subsequentcrystallization, mixing, or equilibration events. The magnitudeof the isotopic variability resulting from crystal–meltseparation can be as large as that resulting from differentialcontamination, multiple isotopically distinct sources, or insitu isotopic evolution. In one model, a redistribution of one-thirdof the antecryst cargo yielded a crystal-enriched sample with87Sr/86Sr of 0·7058, whereas the complementary crystal-poorsample has 87Sr/86Sr of 0·7068. In other models, crystal-richsamples are enriched in radiogenic Sr. Isotopic heterogeneitiescan be either continuous (controlled by the modal distributionof crystals and melt) or discontinuous (when there is completeseparation of crystals and liquid). The first case may be exemplifiedby some isotopically zoned large-volume rhyolites, formed bythe eruptive inversion of a modally zoned magma chamber. Inthe latter case, the isotopic composition of any (for example)interstitial liquid will be distinct from the isotopic compositionof the bulk crystal fraction. The separation of such an interstitialliquid may explain the presence of isotopically distinct late-stageaplites in plutons. Crystal–melt separation provides anadditional option for the interpretation of isotopically zonedor heterogeneous magmas. This option is particularly attractivefor systems whose chemical variation is otherwise explicableby fractionation-dominated processes. Non-isotopic chemicalheterogeneities can also develop in this fashion. KEY WORDS: isotopic heterogeneity; zoning; hybrid magma; crystal separation; Sr isotopes; aplite; rhyolite  相似文献   
4.
The Mariánské Lázn complex (MLC) is located in the Bohemian Massif along the north-western margin of the Teplá-Barrandian microplate and consists of metagabbro, amphibolite and eclogite, with subordinate amounts of serpentinite, felsic gneiss and calcsilicate rocks. The MLC is interpreted as a metaophiolite complex that marks the suture zone between the Saxothuringian rocks to the north-west and the Teplá-Barrandian microplate to the south-east. Sm-Nd geochronology of garnet-omphacite pairs from two eclogite samples yields ages of 377±7, and 367±4 Ma. Samples of eclogite and amphibolite do not define a whole rock Sm-Nd isochron, even though there is a large range in Sm/Nd ratio, implying that the suite of samples may not be cogenetic. Eclogites do not have correlated Nd values and initial 87Sr/86Sr ratios. Five of the eight eclogite samples have high Nd values (+10.2 to +7.1) consistent with derivation from a MORB-like source, but variable 87Sr/86Sr ratios (0.7033 to 0.7059) which probably reflect hydrothermal seawater alteration. Three other eclogite samples have lower Nd values (+ 5.4 to –0.8) and widely variable 87Sr/86Sr ratios (0.7033 to 0.7096). Such low Nd values are inconsistent with derivation from a MORB, source and may reflect a subduction or oceanic island basalt component in their source. The MLC is an important petrotectonic element in the Bohemian Massif, providing evidence for Cambro-Ordovician formation of oceanic crust and interaction with seawater, Late Devonian (Frasnian-Famennian) high- and medium-pressure metamorphism related to closure of a Saxothuringian ocean basin, Early Carboniferous (Viséan) thrusting of the Teplá terrane over Saxothuringian rocks and Late Viséan extension.  相似文献   
5.
Photoautotrophic bacteria that oxidize ferrous iron (Fe[II]) under anaerobic conditions are thought to be ancient in origin, and the ferric (hydr)oxide mineral products of their metabolism are likely to be preserved in ancient rocks. Here, two enrichment cultures of Fe(II)-oxidizing photoautotrophs and a culture of the genus Thiodictyon were studied with respect to their ability to fractionate Fe isotopes. Fe isotope fractionations produced by both the enrichment cultures and the Thiodictyon culture were relatively constant at early stages of the reaction progress, where the 56Fe/54Fe ratios of poorly crystalline hydrous ferric oxide (HFO) metabolic products were enriched in the heavier isotope relative to aqueous ferrous iron (Fe[II]aq) by ∼1.5 ± 0.2‰. This fractionation appears to be independent of the rate of photoautotrophic Fe(II)-oxidation, and is comparable to that observed for Fe isotope fractionation by dissimilatory Fe(III)-reducing bacteria. Although there remain a number of uncertainties regarding how the overall measured isotopic fractionation is produced, the most likely mechanisms include (1) an equilibrium effect produced by biological ligands, or (2) a kinetic effect produced by precipitation of HFO overlaid upon equilibrium exchange between Fe(II) and Fe(III) species. The fractionation we observe is similar in direction to that measured for abiotic oxidation of Fe(II)aq by molecular oxygen. This suggests that the use of Fe isotopes to identify phototrophic Fe(II)-oxidation in the rock record may only be possible during time periods in Earth’s history when independent evidence exists for low ambient oxygen contents.  相似文献   
6.
Metasomatism accompanying kimberlite emplacement is a worldwide phenomenon, although infrequently described or recognised. At the Cambrian-aged Murowa and Sese kimberlite clusters located within the Archean Zimbabwe Craton just north of the boundary with the Limpopo Mobile Zone in southern central Zimbabwe, the metasomatism is intense and well exposed and the processes can be readily studied. Dykes, sills and the root zones of pipes are exposed at the current erosion level. Kimberlite lithologies present are hypabyssal macrocrystic kimberlite (“HMK”), HMK breccia, and tuffisitic kimberlite breccia (“TKB”) including minor lithic tuffisitic kimberlite breccia (“LTKB”). Country rocks are 2.6 Ga Chibi and Zimbabwe granite batholiths emplaced into 2.6–2.9 Ga or earlier Archean tonalitic gneiss and greenstones. During initial metasomatism, the granites become spotted with green chlorite, needles of alkaline amphiboles (winchite, riebeckite, arfvedsonite) and pyroxenes (aegirine–augite) with minor carbonate and felts of talc. Oligoclase feldspar becomes converted to albite, extensively altered, dusted and reddened with hematite, whereas K-feldspar remains unaffected. The granites become converted to syenite through removal of quartz. More intense metasomatism at Murowa and Sese results in veins of green metasomatite which cut and disrupt the granite. Progressive disruption entrains granite blocks, breaking down the granite still further, spalling off needle-like granite slivers, and so giving rise to LTKB. This process of disruption and entrainment appears to be the manner of initial development of the pipe structure. The chemistry of the metasomatite is intermediate between granite and kimberlite. Compared to granite country rock it has markedly higher Mg, Cr, Ni, CO2 and H2O+, higher Ca, Mn, Nb, Sr, P, Fe3+/Fe2+ ratio, U, Co, and Cu, approximately equal TiO2, K2O, Na2O, La, Ta, Rb, Zr, Zn and resultant lower SiO2, Al2O3, Ga and Y. The metasomatite Na2O/K2O ratio is slightly higher than that of the granite. The metasomatic process is broadly analogous to fenitisation of granitic wall rock accompanying carbonatite complex emplacement. The metasomatism at Murowa and Sese was caused by fluids from the rising but confined proto-kimberlite melt penetrating into cracks and matrix of granite country rock and reacting with it. These fluids were CO2-rich, hydrous, oxidising, enhanced in ultramafic elements and carried low levels of Na.  相似文献   
7.
In a histogram of lunar impact ages from the Apollo 16 site, there is a spike circa 3.9 Ga that has been interpreted to represent either a large number of nearly synchronous events or an abundance of samples that were affected slightly differently by the event that produced the Imbrium basin. To further scrutinize those age relationships, we extracted six centimeter‐sized clasts of impact melt from ancient regolith breccia 60016 and performed petrological and geochronological (40Ar‐39Ar) analyses. Three clasts have similar poikilitic textures, while others have porphyritic, aphanitic, or intergranular textures. Compositions and abundances of relict minerals are different in all six clasts and variously imply Mg‐suite and ferroan anorthosite target sequences. Estimated bulk compositions of four clasts are similar to previously defined group 1 Apollo 16 impact melt rocks, while the other two have higher Al2O3 and lower FeO+MgO compositions. All six clasts have similar K2O and P2O5 concentrations, which could have been derived from a KREEP‐bearing component among target sequences. Eighteen 40Ar/39Ar analyses of the six clasts produced an age range from 3823 ± 75 to 4000 ± 23 Ma, consistent with estimates for the proposed late heavy bombardment. Four clasts have multiple temperature steps that define plateau ages. These ages are distinct, so they cannot be explained by a single impact event, such as the one that produced the Imbrium impact basin. The conclusion that these represent distinct ages remains after considering the possibility of artifacts in defining plateaus.  相似文献   
8.
The study investigated the global and regional phylogeography of the yellowtail kingfish Seriola lalandi by examining genetic diversity and population genetic structure of this species at inter-and intra-ocean level and on a regional scale. DNA fragments of two mitochondrial genes, cytochrome b (Cytb) and cytochrome c oxidase subunit I (COI) and one nuclear gene, recombination activating gene 1 (RAG1), were sequenced to investigate the global-scale phylogeography of this species. The population genetic structure within the South Pacific, as well as along the South African coastline, was examined further using six microsatellite markers. Three distinct clades were identified for S. lalandi, which correspond with previously described subspecies of the North-East Pacific, North-West Pacific and the Southern Hemisphere. Within the latter, additional divergence was observed between the South Pacific and the South-East Atlantic regions. Divergence estimates were indicative of a Pacific origin for S. lalandi populations, because of Pleistocene vicariant events. Microsatellite analyses revealed overall significant genetic differentiation between South African and South Pacific samples. This corroborates recent findings on the global phylogeography of the species. No population differentiation was observed within South Africa, indicating high levels of gene flow.  相似文献   
9.
Experiments (P=6.9 kb; T=900–1000°C) on four crustal xenoliths from Kilbourne Hole demonstrate the varying melting behavior of relatively dry crustal lithologies in the region. Granodioritic gneisses (samples KH-8 and KH-11) yield little melt (<5–25%) by 925°C, but undergo extensive (30–50%) melting between 950 and 1000°C. A dioritic charnockite (KH-9) begins to melt, with the consumption of all modal K-feldspar, by 900°C. It is as fertile a melt source as the granodiorites at lower temperatures, but is outstripped in melt production by the granodiorite gneisses at high temperature, yielding only 26% melt by 1000°C. A pelitic granulite (KH-12) proved to be refractory (confirming earlier predictions based on geochemistry) and did not yield significant melt even at 1000°C. All melts have the composition of metaluminous to slightly peraluminous granites and are unlikely to be individually recognizable as magma contaminants on the basis of major element chemistry. However, the relative stability of K-feldspar during partial melting will produce recognizable signatures in Ba, Eu, K/Ba, and Ba/Rb. Melts of KH-11, which retains substantial K-feldspar throughout the melting interval, are generally low in Ba (<500–800 ppm), have high K/Ba and low Ba/Rb (est.) (62–124 and 1–3, respectively). Melts of KH-9, in which all K-feldspar disappears with the onset of melting, are Ba-rich [2000–2600 ppm, K/Ba=16–22; Ba/Rb (est.) =25–47]. Melts of KH-8 have variable Ba contents; <500 ppm Ba at low temperature but >900 ppm Ba in high-temperature melts coexisting with a K-feldspar-free restite. Although REE were not measured in either feldspar or melt, the high Kspar/melt Kds for Eu suggests that the melts coexisting with K-feldspar will have strong negative Eu anomalies. Isotopic and trace element models for magma contamination need to take into account the melting behavior of isotopic reservoirs. For example, the most radiogenic (and incompatible element-rich) sample examined here (the pelitic granulite,87Sr/86Sr=0.757) is refractory, while samples with far less radiogenic Sr (87Sr/86Sr=0.708-0.732) produced substantial melt. This suggests that, in this area, the isotopic signature of contamination may be more subtle than expected. The experimental results can be used to model the petrogenesis of Oligocene volcanic rocks exposed 150 km to the NW of Kilbourne Hole, in the Black Range in the Mogollon-Datil volcanic field. The experimental results suggest that a crustal melting origin for the Kneeling Nun and Caballo Blanco Tuffs is unlikely, even though such an interpretation is permitted by Sr isotopes. Curstal contamination of a mantle-derived magma best explains the chemical and isotopic characteristics of these tuffs. Both experimental and geochemical data suggest that the rhyolites of Moccasin John Canyon and Diamond Creek could represent direct melts of granodiorite basement similar, but not identical, to the Kilbourne Hole granodiorites, perhaps slightly modified by crystal fractionation. The absence of volcanic rocks having87Sr/86Sr>0.74 in the region is consistent with the refractory character of the pelitic granulite.  相似文献   
10.
High precision U–Pb geochronology of rutile from quartz–carbonate–white mica–rutile veins that are hosted within eclogite and schist of the Monte Rosa nappe, western Alps, Italy, indicate that the Monte Rosa nappe was at eclogite-facies metamorphic conditions at 42.6 ± 0.6 Ma. The sample area [Indren glacier, Furgg zone; Dal Piaz (2001) Geology of the Monte Rosa massif: historical review and personal comments. SMPM] consists of eclogite boudins that are exposed inside a south-plunging overturned synform within micaceous schist. Associated with the eclogite and schist are quartz–carbonate–white mica–rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins at about 42.6 Ma occurred at eclogite-facies metamorphic conditions (480–570°C, >1.3–1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. The timing of eclogite-facies metamorphism in the Monte Rosa nappe determined in this study is identical to that of the Gran Paradiso nappe [Meffan-Main et al. (2004) J Metamorphic Geol 22:261–281], confirming that these two units have shared the same Alpine metamorphic history. Furthermore, the Gran Paradiso and Monte Rosa nappes underwent eclogite-facies metamorphism within the same time interval as the structurally overlying Zermatt-Saas ophiolite [∼50–40 Ma; e.g., Amato et al. (1999) Earth Planet Sci Lett 171:425–438; Mayer et al. (1999) Eur Union Geosci 10:809 (abstract); Lapen et al. (2003) Earth Planet Sci Lett 215:57–72]. The nearly identical PTt histories of the Gran Paradiso, Monte Rosa, and Zermatt-Saas units suggest that these units shared a common Alpine tectonic and metamorphic history. The close spatial and temporal associations between high pressure (HP) ophiolite and continental crust during Alpine orogeny indicates that the HP internal basement nappes in the western Alps may have played a key role in exhumation and preservation of the ophiolitic rocks through buoyancy-driven uplift. Coupling of oceanic and continental crust may therefore be critical in preventing permanent loss of oceanic crust to the mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号