首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   4篇
地质学   3篇
天文学   1篇
  2014年   1篇
  2009年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
An original theoretical model has been devised to simulate mass flow over hill slopes due to gravitational sliding. The sliding mass is discretized into a sequence of contiguous blocks which are subjected to gravitational forces, to bottom friction and to surface resistance stresses that are generally negligible for subaerial flows, but are relevant for submarine slides. The blocks interact with each other while sliding down the hill flanks because of internal forces that dissipate mechanical energy and produce a momentum exchange between the individual blocks, yet conserving the total momentum of the mass. Internal forces are expressed in terms of interaction coefficients depending on the instantaneous distance between the block centers of mass, which is a measure of the deformation experienced by the blocks: the functional dependence includes three parameters, namely the interaction intensity ¯, the deformability parameter and the shape parameter , by means of which a wide range of interaction types can be fully accounted for. The time integration is performed numerically by solving the equations for the block velocities and positions at any time ti by means of the block accelerations at the previous time ti-1, and by subsequently updating the block accelerations, which allows to proceed iteratively to the following times. The model has been tested against laboratory results available from literature and by means of several numerical experiments involving a simplified geometry both for the sliding body and the basal surface, with the purpose of clarifying the influence of the model parameters on the slide dynamics. The model improves the performance of the existing kinematic models for slides, moreover preserving an equivalent numerical simplicity. Future applications and possible improvements of this model are suggested.  相似文献   
2.
The search for the still unrevealed spectral shape of the mysterious THz solar flare emissions is one of the current most challenging research issues. The concept, fabrication and performance of a double THz photometer system, named SOLAR-T, is presented. Its innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. The detecting system was constructed to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. Tests have been conducted to confirm the entire system performance, on ambient and low pressure and temperature conditions. An artificial Sun setup was developed to simulate performance on actual observations. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014–2016.  相似文献   
3.
-- Landslide-induced tsunamis are receiving increased attention since there is evidence that recent large devastating events have been caused by underwater mass failures. Normally, numerical models are used to simulate tsunami excitation, most of which are based on shallow water, known also as long wave, approximation to the full equations of hydrodynamics. Analytical studies may handle only simplified problems, but help understand the basic features of physical processes. This paper is an analytical investigation of long-water waves excited by rigid bodies sliding on the sea bottom, based on the shallow-water approximation, which is here derived by properly scaling Euler equations for an inviscid, incompressible and irrotational ocean. In one-dimensional (1-D) cases (where motion depends only on one horizontal coordinate), under the further assumptions of small-height slide, which permits the recourse to linear theory, and of flat ocean floor, a solution for arbitrary body shape and velocity is deduced by applying the Duhamel theorem. It is also shown that this theorem can be advantageously used to obtain a general solution in case of a non-flat ocean floor, when the sea bottom follows a special power law, that can be adapted to study reasonable bottom profiles. The characteristics of the excited tsunamis are then evaluated by computing solutions in numerous examples, with special focus on wave pattern and wave evolution. The energy of the wave system is shown to depend on time: it grows expectedly in the initial phase of tsunami generation, when the moving body transfers energy to the water, but it may also diminish later, implying that a certain amount of energy may pass back from water waves to the slide.  相似文献   
4.
The Tsunami of August 17, 1999 in Izmit Bay,Turkey   总被引:2,自引:0,他引:2  
Altinok  Y.  Tinti  S.  Alpar  B.  Yalçiner  A. C.  Ersoy  Ş  Bortolucci  E.  Armigliato  A. 《Natural Hazards》2001,24(2):133-146
The Kocaeli 1999 Earthquake with an Mw = 7.4 caused major hazards throughout the NW of Turkey from Tekirdag to Bolu. Historical data indicates that some of the earthquakes around Izmit Bay have caused tsunamis. In this study, tsunami research for the Kocaeli 1999 Earthquake has been made also taking into consideration historical data. In this research more than about 70 data at 35 localities have been used to determine the tsunami evidences in the bay. Coastal observations indicated runups which were ranging from 1 to 2.5 m along the shores. However, the wave runups are more complex along the south coast due to the presence of coastal landslides (Deirmendere, Halidere, Ulasli, Karamürsel) and subsided areas (Kavakli to Yeniköy) along the shore. West of Yalova, evidence of tsunami rapidly diminished. In addition, possible tectonic mechanism has been determined by using 33 single-channel high-resolution digital seismic reflection profiles which were acquired following the Kocaeli 1999 Earthquake. As a result it has been determined that the Kocaeli Earthquake has created tsunami in Izmit Bay.  相似文献   
5.
Energy of Water Waves Induced by Submarine Landslides   总被引:4,自引:0,他引:4  
—Water waves generated by submarine landslides may constitute a serious hazard for coastal population and environment. These masses may be giant, as documented by several examples in recent history and by numerous geological traces of paleo-events. A theoretical investigation on wave generation and wave energy is performed here by using a model that is based on some simplifying assumptions. The landslide is treated as a rigid body moving underwater according to a prescribed velocity function. Water waves are governed by the shallow-water wave equations, where water velocity is constant through the water layer and vertical velocity is negligibly small. Geometrically simple basins are considered with either constant depth or constant slope, since attention is focused on the fundamental characteristics of the generation process. Analytical 1-D solutions as well as 1-D and 2-D numerical results obtained by means of a finite-element model are used to gain understanding of the energy transfer from a moving body to the water. From the 1-D examples, it is found that if slide duration is sufficiently long, water usually gains energy in the form of waves until a saturation point is reached, when body motion is no longer capable of producing a net transfer of energy from the rigid body to water. Finite-duration motions of a body moving at constant speed along a flat ocean floor can be used as canonical examples, since bottom slopes cannot significantly change the generated wave pattern. Typically, two trough-crest systems are developed that travel in opposite directions, with the leading crest in the direction of the slide and the leading trough toward the other direction. The amplitude of the former is generally higher, with amplitude controlled by the Froude number (ratio of body velocity to long waves phase celerity) and wavelength dictated by landslide length. Generation and propagation of 2-D cases show a more complicated pattern, since lateral radiation plays an important role. Some of the features present in the 1-D models are observed in 2-D wavefields, however substantial differences arise. The most significant difference is that no energy saturation takes place in 2-D, since the body transfers energy to the water as long as it moves.  相似文献   
6.
The January 11, 1693 eastern Sicilyearthquake is comparable only with the December 28,1908 Messina Straits event in the Italian seismichistory as regards magnitude (M L 7), level ofdestruction and number of victims. The shock generateda strong tsunami, which hit the entire eastern coastof Sicily and particularly the town of Augusta. Theproblem of which fault was responsible for theearthquake is still open. Several hypotheses have beenformulated in the literature on the basis of differentkinds of geological, macroseismic and tectonic data,but a general agreement has not been reached yet. Animportant contribution to the discussion may come fromthe analysis of the tsunami data. In two previouspapers (Piatanesi et al., 1996; Piatanesi and Tinti,1998), the hydro-dynamical study of the tsunami basedon finite-element (FE) numerical simulations wascarried out taking into consideration mostlytheoretical faults, i.e. faults selected for theirsignificance in tsunami generation irrespective of thecorresponding geological evidence. This paper has tobe considered the continuation of the mentioned works.We have studied new sources proposed in theliterature, consistent with macroseismic data and/orgeological observations, and simulated thecorresponding tsunamis. We also built a new FE gridintroducing significant improvements in the coastlinerepresentation, and developed and applied a newalgorithm in order to account for the effect of thesea-bottom topography on the tsunami initialcondition. Some of the examined faults are located inthe Scordia-Lentini (SL) graben region and interceptthe coastline, others are placed in correspondencewith the Hyblaean-Malta (HM) escarpment and runparallel or sub-parallel to the coast. The conclusionof our work is that none of these faults respectsfully the available observations on tsunami, and thatthe faults exhibiting the best fit are those placed inthe SL region. It is worth stressing that our resultsare important for the assessment of seismic andtsunami hazard/risk in eastern Sicily, keeping also inmind that the 1693 earthquake has been selected as thereference event for an earthquake-scenario study inCatania and in south-eastern Sicily, called `CataniaProject', funded by CNR/GNDT (Consiglio Nazionaledelle Ricerche/Gruppo Nazionale Difesa dai Terremoti).  相似文献   
7.
Summary  A weathering classification for granitic rock materials from southeastern Brazil was framed based on core characteristics. The classification was substantiated by a detailed petrographic study. Indirect assessment of weathering grades by density, ultrasonic and Schmidt hammer index tests was performed. Rebound values due to Schmidt hammer multiple impacts at one representative point were more efficient in predicting weathering grades than averaged single impact rebound values, P-wave velocities and densities. Uniaxial compression tests revealed that a large range of uniaxial compressive strength (214–153 MPa) exists in Grade I category where weathering does not seem to have played any role. It was concluded that variability in occurrences of quartz intragranular cracks and in biotite percentage, distribution and orientation might have played a key role in accelerating or decelerating the failure processes of the Grade I specimens. Deterioration of uniaxial compressive strength and elastic modulus and increase in Poisson’s ratio with increasing weathering intensity could be attributed to alteration of minerals, disruption of rock skeleton and microcrack augmentation. A crude relation between failure modes and weathering grades also emerged. Correspondence: Prof. T. B. Celestino, Universidade de S?o Paulo, S?o Carlos, Brazil  相似文献   
8.
 On 20 April 1988 a landslide of approximately 200,000 m3 occurred on the northeastern flank of the volcano La Fossa on the island of Vulcano. The landslide fell into the sea, producing a small tsunami in the bay between Punte Nere and Punta Luccia that was observed locally in the neighbouring harbour called Porto Levante. The slide occurred during a period of unrest at the volcano that was monitored very accurately. The study of this event is composed of two parts, the simulation of the landslide and the simulation of the ensuing tsunami; the former is studied by means of a Lagrangian-type numerical model in which the landslide is seen as a multibody system, an ensemble of material-deforming blocks interacting together during their motion; the latter is simulated according to the Eulerian view by solving the shallow-water approximation to Navier-Stokes equations of fluid dynamics, with the incorporation of a forcing term depending on the slide motion. Technically, the slide evolution is computed first, and this result is then used to evaluate the excitation term of the hydraulic equations and to calculate the tsunami propagation. Computed wave fronts radiate both toward the open sea, with rapid amplitude decay, and along the shore, in the form of edge waves that lose energy slowly. Comparison between model outputs and observations can be carried out only in a qualitative way owing to the absence of tide-gauge records, and results are satisfactory. Received: 14 September 1998 / Accepted: 18 December 1998  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号