首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
大气科学   1篇
地球物理   4篇
地质学   6篇
海洋学   1篇
天文学   3篇
  2021年   1篇
  2006年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Tourmaline-rich rocks are common in the lowgrade, interior portions of the Barberton greenstone belt of South Africa, where shallow-marine sediments and underlying altered basaltic and komatiitic lavas contain up to 50% tourmaline. The presence of tourmaline-bearing rip-up clasts, intraformational tourmalinite pebbles, and tourmaline-coated grains indicates that boron mineralization was a low-temperature, surficial process. The association of these lithologies with stromatolites, evaporites, and shallow-water sedimentary structures and the virtual absence of tourmaline in correlative deep-water facies rocks in the greenstone bels strengthens this model.Five tourmaline-bearing lithologic groups (basalts, komatiites, evaporite-bearing sediments, stromatolitic sediments, and quartz veins) are distinguished based on field, petrographic, and geochemical criteria. Individual tourmaline crystals within these lithologies show internal chemical and textural variations that reflect continued growth through intervals of change in bulk-rock and fluid composition accompanying one or more metasomatic events. Large single-crystal variations exist in Fe/Mg, Al/Fe, and alkali-site vacancies. A wide range in tourmaline composition exists in rocks altered from similar protoliths, but tourmalines in sediments and lavas have similar compositional variations. Boron-isotope analysis of the tourmalines suggest that the boron enrichment in these rocks has a major marine evaporitic component. Sediments with gypsum pseudomorphs and lavas altered at low temperatures by shallow-level brines have the highest 11B values (+2.2 to-1.9); lower 11B values of late quartz veins (-3.7 to-5.7) reflect intermediate temperature, hydrothermal remobilization of evaporitic boron. The 11B values of tourmaline-rich stromatolitic sediments (-9.8 and-10.5) are consistent with two-stage boron enrichment, in which earlier marine evaporitic boron was hydrothermally remobilized and vented in shallow-marine or subaerial sites, mineralizing algal stromatolites. The stromatolite-forming algae preferentially may have lived near the sites of hydrothermal discharge in Archean times.  相似文献   
2.
3.
Plagioclase from a progressively metamorphosed granodiorite changes as the metamorphic grade increases. Lower grade plagioclase are chemically inhomogeneous, with zoned rims containing distinct compositional levels of An0?3, An17, and An25. As grade increases the plagioclase becomes more chemically homogeneous with An0?3 rims dominating. Microcline inclusions are controlled by internal defects at lower grades and grain boundaries at higher grades. Myrmekite rims are developed at the highest grade. Rims are dependent on surface energy factors and occur at triple points, high angle lattice misfits and other high energy surfaces. At low grades, rims form at plagioclase-plagioclase contacts and at higher grades, at plagioclase-microcline contacts. These changes are due to impurity segregation and grain boundary migration, and an increase of the letter process at higher grades.  相似文献   
4.
Massive, nearly holocrystalline dolerites from DSDP Hole 417D contain from 0.5 to 1.5% of granophyric patches composed mainly of Na-plagioclase and quartz. These patches are compositionally similar to other crystalline silicic rocks from oceanic spreading centers and differ from rarer abyssal silicic glasses. Crystalline varieties withSiO260wt.% generally haveNa/K>10, whereas silicic glasses have Na/K in the range 3–6. While crystal fractionation readily accounts for the Na2O and K2O contents of abyssal silicic glasses, both the 417D granophyres and other crystalline abyssal silicic rocks have much lower K2O than that predicted by any reasonable crystal-liquid fractionation model. We propose that high-temperature vapor phase transport is responsible for removal of potassium during late-stage crystallization of these rocks. This allows for the formation of cogenetic silicic glassy and crystalline rocks with greatly different Na/K ratios. These observations and interpretations lead to a more confident assignment of high Na/K silicic rocks of oceanic and ophiolitic environments to a cogenetic origin with basaltic oceanic crust.  相似文献   
5.
Barite chimneys associated with hydrocarbonrich fluid venting were recently documented and sampled on the Gulf of Mexico slope offshore Louisiana at 510–520 m water depth. The chimneys are dominated by barite associated with minor amounts of pyrite, iron oxide, Mg calcite, and detrital silicates. The barite displays distinct string-like and dendritic-like morphologies assembled from rosette-shaped crystals that are typically 20–40 µm in diameter. The chimneys exhibit macroscopic growth layers 1–5 mm thick, which alternate between dark gray and light yellow colors. The dark layers are dominated by string barites associated with disseminated pyrite, while the light layers are dominated by dendritic barites with little or no pyrite. The barites are anomalously enriched in Sr (average 15.5 mol% and maximum 30 mol%) and Ca (average 2.8 mol% and maximum 4.6 mol%), and exhibit rhythmic, paired, microscopic light and dark bands. The exact origin of the barites and their mode of deposition has not yet been elucidated, but they are likely to be related to the hydrocarbon-rich fluids venting on the seabed.  相似文献   
6.
Volcanic rocks, dredged from depths greater than 1000 m on the Galapagos spreading center, show extreme chemical diversity, including rhyodacites, andesite, ferro-basalts, and low-K oceanic tholeiite. All samples have fresh glassy margins. The ferro-basalts contain up to 18.5% total iron as FeO and up to 3.75% TiO2, while the oceanic tholeiites are as low as 0.02% K2O. The ferro-basalts correlate with the previously proposed zone of high magnetic anomaly amplitudes which flank the Galapagos hot spot, and are consistent with a genesis by shallow fractional crystallization.  相似文献   
7.
There is considerable debate about the mode and age of formation of large (up to ∼200 m long) hematite and goethite ironstone bodies within the 3.2 to 3.5 Ga Barberton greenstone belt. We examined oxygen and hydrogen isotopes and Rare Earth Element (REE) concentrations of goethite and hematite components of the ironstones to determine whether these deposits reflect formation from sea-floor vents in the Archean ocean or from recent surface and shallow subsurface spring systems. Goethite δ18O values range from −0.7 to +1.0‰ and δD from −125 to −146‰, which is consistent with formation from modern meteoric waters at 20 to 25 °C. Hematite δ18O values range from −0.7 to −2.0‰, which is consistent with formation at low to moderate temperatures (40-55 °C) from modern meteoric water. REE in the goethite and hematite are derived from the weathering of local sideritic ironstones, silicified ultramafic rocks, sideritic black cherts, and local felsic volcanic rocks, falling along a mixing line between the Eu/Eu* and shale-normalized HREEAvg/LREEAvg values for the associated silicified ultramafic rocks and felsic volcanic rocks. Contrasting positive Ce/Ce* of 1.3 to 3.5 in hematite and negative Ce/Ce* of 0.2 to 0.9 in goethite provides evidence of oxidative scavenging of Ce on hematite surfaces during mineral precipitation. These isotopic and REE data, taken together, suggest that hematite and goethite ironstone pods formed from relatively recent meteoric waters in shallow springs and/or subsurface warm springs.  相似文献   
8.
An extremely differentiated suite of unaltered volcanic rocks dredged from the Galapagos Spreading Center ranges in 18O from 5.7 to 7.1 At 95°W, low K-tholeiites, FeTi-basalts, andesites and rhyodacites were recovered. Their lithologic and major element geochemical variation can be accounted for by crystal fractionation of plagioclase, pyroxenes, olivine and titanomagnetite in the same proportions and amounts needed to model the 18O variation by simple Rayleigh fractionation. More complicated behaviour was observed in a FeTi-basalt suite from 85°W. This study shows that 90% fractionation only enriches the residual melt by about 1.2 in 18O. It also implies that the magma chambers along parts of the Galapagos Spreading Center were static and isolated such that extreme differentiation could occur.  相似文献   
9.
The circular maria - Orientale, Imbrium, Serenitatis, Crisium, Smythii, and Tsiolkovsky -lie nearly on a lunar great circle. This pattern can be considered the result of a very close, non-capture encounter between Moon and Earth early in solar-system history. Of critical importance in analyzing the effects of such an encounter is the position of the weightlessness limit of the Earth-Moon System which is located at about 1.63R e, measured from the center of Earth to center of Moon. Within this weightlessness limit, material can be pulled from the lunar surface and interior by Earth's gravity and either escape from the Moon or be redistributed onto the lunar surface. In the case of an encounter with a non-spinning Moon, backfalling materials would be distributed along a lunar great circle. However, if the Moon is rotating during the encounter, the backfall pattern will deviate from the great circle, the amount depending on the rate and direction of spin. Such a close encounter model may be related to the pattern of circular maria if materials departing from the source region are visualized as spheroids of molten lunar upper mantle basalt. These spheroids, then, would impact onto the lunar surface to form a pattern of lava lakes. Radiometric dates from mare rocks are consistent with this model of mare formation if the older mare rock dates are considered to date the encounter and younger dates are considered to date subsequent volcanic eruptions on a structurally weakened Moon.  相似文献   
10.
Natural Hazards - Private landowners are important actors in landscape-level wildfire risk management. Accordingly, wildfire programs and policy encourage wildland–urban interface homeowners...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号