首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   2篇
海洋学   6篇
  2013年   1篇
  2005年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1989年   1篇
排序方式: 共有8条查询结果,搜索用时 171 毫秒
1
1.
The first map of the sea bed morphology and sedimentary features within the RMSTitanic search area is proposed from the interpretation of SAR side-scan sonar images. Downslope sedimentary features such as erosional furrows and crown scarps constitute a 7 km wide instability corridor. A large field (15 km2) of asymmetrical sediment waves indicating a downslope transport is identified. Current-induced features corresponding to associated sand ribbons and barchan dunes resulting from the Western Boundary Undercurrent action are mapped. The morphology of theTitanic Canyon is also precised from the SAR images. Finally, the origin of the sea bed features is discussed in an attempt to link each bed form to a sedimentary process.  相似文献   
2.
This article presents a methodology developed to evaluate the instability of submarine slopes that extend over a large area. Special attention was paid to (1) the complex geometry (bathymetry) and the expanse of the slope, (2) the heterogeneity of the sediment, and (3) the distribution of the pore pressure. The safety factor was considered as a spatially varying quantity. The General Formulation (GLE, Fredlund and Krahn 1977), which fully satisfies equilibrium conditions, was used for evaluating the stability of the marine slope. The submarine slope failure, which occurred on 16 October 1979 during the construction of the new Nice airport, was studied in order to test the developed model. Geotechnical parameters were taken from experimental tests carried out by IFREMER on 19 cores extracted at different depths (from 27 m to 1300 m) (Cochonat, Bourillet, and Savoye, 1993; Mulder et al., 1994). Many scenarios were proposed in order to explain the cause of the Nice slope failure (Habib, 1994). In this article, two of those scenarios were tested. Simulation results are presented and discussed.  相似文献   
3.
Ollier  Cochonat  Lénat  & Labazuy 《Sedimentology》1998,45(2):293-330
A volcaniclastic sedimentary fan extending to water depths of 4000 m is characterized using gravity cores, camera surveys, high-resolution sonar images, seismic records and bathymetry from the submarine portion of La Fournaise volcano, Réunion Island, a basaltic shield volcano in the SW Indian Ocean. Three main areas are identified from the study: (1) the proximal fan extending from 500 m water depth down to 2000 m water depth; (2) the outer fan extending from 2000 m water depth down to 3600 m water depth; (3) the basin extending beyond 3600 m water depth. Within these three main areas, seven distinct submarine environments are defined: the proximal fan is characterized by volcanic basement outcrops, sedimentary slides, deep-water deltas, debris-avalanche deposits, and eroded floor in the valley outlets; the outer fan is characterized by a discontinuous fine-grained sedimentary cover overlying coarse-grained turbidites or undifferentiated volcanic basement; the basin is characterized by hemipelagic muds and fine-grained turbidites interbedded with sandy and gravelly turbidite lobes. The evolution of the deep-sea volcaniclastic fan is strongly influenced by sector collapses, such as the one which occurred 0·0042 Ma ago. This collapse produced a minimum of 6 km3 of debris-avalanche deposit in the proximal area. The feeding regime of the deep-sea fan is ‘alluvial dominated’ before the occurrence of any sector collapse and ‘lava-dominated’ after the occurrence of a sector collapse. The main deep-water lava-fed delta is prograding among the blocks of the debris-avalanche deposits as a result of turbidity flows occurring on the delta slope. These turbidity flows are triggered routinely by wave-action, earthquakes and accumulation of new volcanic debris on top of the deltas. Both turbidity currents triggered on the deep-water delta slope, and those triggered by debris avalanche reworked volcaniclastic material as far as 100 km from the shore line.  相似文献   
4.
A seabed 2-m-long cone penetrometer and coring system (Geotechnical Module) has been used at 17 stations in four transects on the Scotian Slope to characterise in situ shear strength and induced pore pressure on several different types of late Pleistocene and early Holocene failure. Study sites were selected using the SAR high-resolution deep-towed acoustic system equipped with a digital 160–190 kHz sidescan sonar and a 3.5 kHz subbottom profiler.

Several distinctive types of “geotechnical signature” were recognised from plots of cone resistance and induced pore pressure with depth in the sediment. Normally consolidated sediments show a progressive increase in cone resistance with depth (to about 75 kPa at 2 m subbottom). Holocene surficial muds show spectacular apparent overconsolidation, reaching a peak of 250 kPa at about 50 cm subbottom and then decreasing down to 1.5 m. This overconsolidation is associated with Zoophycos burrows. Late Pleistocene sediments exhumed by bedding plane slides show strong true overconsolidation consistent with the original depth of burial inferred from high-resolution seismic stratigraphy. Debris flows show only a slight shear stress gradient with depth (40–45 kPa over 0.5–1 m subbottom) with under-consolidation due to remoulding of sediment.  相似文献   

5.
Three types of failure are present on the continental slope off Nice: superficial slumping, deep-seated failure, and gullying of the canyon walls. Only deep-seated failures displace large sediment volumes and represent an important geological hazard. Triggering mechanisms for failure are variable and include earthquake loading, undercutting, and increasing pore pressure through sediment loading. A combination of failure type, depositional setting, and triggering mechanism suggests six different failure scenarios that have to be taken into account if geotechnical modeling is to reproduce the variability and pattern of seafloor failure of Nice. Received: 21 August 1998 / Revision received: 24 March 1999  相似文献   
6.
ROV study of a giant pockmark on the Gabon continental margin   总被引:1,自引:4,他引:1  
A giant, 800-m wide pockmark, called Regab, was discovered along the Equatorial African margin at 3160-m water depth and was explored by remote operated vehicle (ROV) as part of the Zaiango (1998–2000) and Biozaire (2001–2003) projects carried out conjointly by TOTAL and a number of French research institutes. A microbathymetric map obtained using the ROV sensors shows that the pockmark actually consists of a cluster of smaller pockmarks aligned N70 along a 15-m deep depression. Methane was recorded all over the pockmark, the highest values along the axis of the depression where massive carbonate crusts and dense seep communities were also found. Several faunal species belong to the Vesicomyidae and Mytilidae bivalve families, as well as to Siboglinidae (Vestimentifera) tubeworms. Preliminary analyses confirm their association with symbiotic bacteria, thus documenting their dependence on fluid seeps. The pockmark appears to be related to an infilled channel, visible on the seismic data 300 m below the seafloor, which may act as a reservoir for biogenic fluids supplied to the trap from the surrounding sediments.  相似文献   
7.
Abstract

This article presents a methodology developed to evaluate the instability of submarine slopes that extend over a large area. Special attention was paid to (1) the complex geometry (bathymetry) and the expanse of the slope, (2) the heterogeneity of the sediment, and (3) the distribution of the pore pressure. The safety factor was considered as a spatially varying quantity. The General Formulation (GLE, Fredlund and Krahn 1977), which fully satisfies equilibrium conditions, was used for evaluating the stability of the marine slope. The submarine slope failure, which occurred on 16 October 1979 during the construction of the new Nice airport, was studied in order to test the developed model. Geotechnical parameters were taken from experimental tests carried out by IFREMER on 19 cores extracted at different depths (from 27 m to 1300 m) (Cochonat, Bourillet, and Savoye, 1993; Mulder et al., 1994). Many scenarios were proposed in order to explain the cause of the Nice slope failure (Habib, 1994). In this article, two of those scenarios were tested. Simulation results are presented and discussed.  相似文献   
8.
Continental slope sediment failures around the epicentre of the 1929 'Grand Banks' earthquake have been imaged with the SAR (Système Acoustique Remorqué) high-resolution, deep-towed sidescan sonar and sub-bottom profiler. The data are augmented by seismic reflection profiles, cores and observations from submersibles. Failure occurs only in water depths greater than about 650 m. Rotational, retrogressive slumps, on a variety of scales, appear to have been initiated on local steep areas of seabed above shallow (5–25 m) regional shear planes covering a large area of the failure zone. The slumps pass downslope into debris flows, which include blocky lemniscate bodies and intervening channels. Clear evidence of current erosion is found only in steep-sided valleys: we infer that debris flows passed through hydraulic jumps on these steep slopes and were transformed into turbidity currents which then evolved ignitively. Delayed retrogressive failure and transformation of debris flows into turbidity currents through hydraulic jumps provide a mechanism to produce a turbidity current with sustained flow over many hours.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号