首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
地球物理   4篇
地质学   5篇
海洋学   2篇
天文学   1篇
  2023年   1篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2000年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Ronchetti  F.  Deiana  M.  Lugli  S.  Sabattini  M.  Critelli  V.  Aguzzoli  A.  Mussi  M. 《Hydrogeology Journal》2023,31(3):601-619
Hydrogeology Journal - The Poiano karst spring is located in the North Apennines (Italy) and it drains Triassic evaporite rocks with a mean discharge of hundreds of liters/second. Two...  相似文献   
2.
Genetic variation at eight microsatellite loci was studied in nine populations of the blue and red shrimp Aristeus antennatus to investigate whether distinct stocks are present in the Western Mediterranean Sea. A high level of gene flow and no evidence of genetic partitioning were discovered. No significant variation was found (FST = 0.00673, P-value = 0.067) even when shrimps from exploited and those from deep-water unexploited grounds were compared. No evidence of reduction or expansion of population size in the recent past was found, as indicated by the bottleneck and interlocus g-tests. Our results are consistent with previous studies using mitochondrial gene methods and allozymes, indicating that, for this species, extensive pelagic larval dispersal and adult migration are probably responsible for the genetic homogeneity observed. In particular, due to a different bathymetric distribution of males and females, reported to be associated with different water masses and hence with possible differential dispersal capacity between sexes, the hypothesis of sex-biased dispersal was tested. Mean values of corrected assignment indices and mean relatedness values were higher for males, suggesting that females are the more widely dispersing sex. Molecular assessment of A. antennatus from the Western Mediterranean provides data of biological and evolutionary interest for the successful management of such a highly valuable fishery resource.  相似文献   
3.
4.
On September 26, 1997, at 00.33 h(GMT), a Mw 5.7 earthquake occurred in the axial zone of theUmbria-Marche Apennines of central Italy, in the Colfiorito basin area. At09.40 h (GMT), a Mw 6.0 earthquake again struck the area withinthe Colfiorito basin, a major intramontane basin filled with Quaternarycontinental deposits. The two main shocks, and the associated aftershockswere within a roughly NNW-SSE trending zone of largest damage (Imax10), in which ground deformation has been observed. Along this trend,Cello et al. (1997a) had mapped a few capable faults, showingtranstensional to pure extensional kinematics. Field inspection of themapped faults, carried out after the main shocks, revealed that some ofthem were locally reactivated (for lengths of several hundreds metres andsurface slip in the range of 2–8 cm) during the September 26, 1997earthquakes.  相似文献   
5.
The Sardinia Radio Telescope (SRT) is a challeging scientific project managed by the National Institute for Astrophysics (INAF), it is being developed at 30 km North of the city of Cagliari, Italy. The goal of the SRT project is to build a general purpose, fully steerable, 64 m diameter radio telescope, capable of operating with high efficiency in the centimeter and millimeter frequency range (0.3–100 GHz). In portions of this frequency range, especially towards the high end, astronomical observations can be heavily deteriorated by non-optimal atmospheric conditions, especially by water vapor content. The water molecule permanent electric dipole in fact, leads to pressure broadened rotational transitions around the 22.23 GHz spectral line. Furthermore, water vapor’s continuum absorption and emission may influence higher frequency observations too. To a lower degree, cloud liquid black body radiation can also affect centimeter and millimeter observations. In addition to this, inhomogeneities in water vapor distributions can cause signal phase errors which introduce a great amount of uncertainty to VLBI mode observations. The Astronomical Observatory of Cagliari (OA-CA) has obtained historical timeseries of radiosonde profiles conducted at the airport of Cagliari. Through the radiosonde measurements and an appropriate radiative transfer model, we have performed a statistical analysis of the SRT site’s atmosphere which accounts for atmospheric opacity at different frequencies, integrated water vapor (IWV), integrated liquid water (ILW) and cloud cover distributions during the year. This will help to investigate in which period of the year astronomical observations at different frequencies should be performed preferably. The results show that, at the SRT site, K-band astronomical observations are possible all year round, the median opacity at 22.23 GHz is 0.10 Np in the winter (Dec-Jan-Feb) and 0.16 Np in the summer (Jun-Jul-Aug). Integrated water vapor during winter months ranges, on average, between 7 and 15 mm. Cloud cover is usually not present for more than 36% of the time during the year. The atmospheric opacity study indicates that observations at higher frequencies (50–100 GHz) may be performed usefully: the median opacity at 100 GHz is usually below or equal to 0.2 Np in the period that ranges from January to April.  相似文献   
6.
7.
8.
The Gubbio fault is an active normal fault defined by an important morphological scarp and normal fault focal mechanism solutions. This fault truncates the inherited Miocene Gubbio anticline and juxtaposes Mesozoic limestones in the footwall against Quaternary lacustrine deposits in the hanging wall. The offset is more than 2000 m of geological throw accumulated during a poly-phased history, as suggested by previous works, and has generated a complex zone of carbonate-rich fault-related structures. We report the results of a multidisciplinary study that integrates detailed outcrop and petrographic analysis of two well-exposed areas along the Gubbio fault zone, geochemical analysis (fluid inclusions, stable isotopes, and trace elements) of calcite-sealed fault-related structures and fault rocks, and biostratigraphic controls. Our aims are: (i) the characterization of the deformation features and their spatial–temporal relationships, and (ii) the determination of the P/T conditions and the fluid behaviour during deformation to achieve a better understanding of fluid–rock interaction in fault zones.We show that few of the observed structures can be attributed to an inherited shortening phase while the most abundant structures and fault rocks are related to extensional tectonics. The outcropping extensional patterns formed at depths less than 2.5–3 km, in a confined fluid system isolated from meteoric water, and the fault structures are the response to a small amount of cumulated displacement, 12–19% of the total geological throw.  相似文献   
9.
Deep-seated landslides are complex systems. In many cases, multidisciplinary studies are necessary to unravel the key hydrological features that can influence their evolution in space and time. The deep-seated Berceto landslide, in the northern Apennines of Italy, has been investigated in order to define the origin and geochemical evolution of groundwater (GW), to identify the slope system hydrological boundary, and to highlight the GW flow paths, transit time and transfer modalities inside the landslide body. This research is based on a multidisciplinary approach that involves monitoring GW levels, obtaining analyses of water chemistry and stable and unstable isotopes (δ18O-δ2H, 3H, 87Sr/86Sr), performing soil leaching tests, geochemical modelling (PHREEQC), and principal component analysis (PCA). The results of δ18O-δ2H and 87Sr/86Sr analyses show that the source of GW recharge in the Berceto landslide is local rainwater, and external contributions from a local stream can be excluded. In the landslide body, two GW hydrotypes (Ca-HCO3 and Na-HCO3) are identified, and the results of PHREEQC and PCA confirm that the chemical features of the GW depend on water–rock interaction processes occurring inside the landslide. The 3H content suggests a recent origin for GW and appears to highlight mixing between shallow and deep GW aliquots. The 3H content and GW levels data confirm that shallow GW is mainly controlled by a mass transfer mechanism. The 3H analyses with GW levels also indicate that only deep GW is controlled by a pressure transfer mechanism, and this mechanism is likely the main influence on the landslide kinematics.  相似文献   
10.
Sedimentation in the upstream reaches of incised valleys is predominantly of alluvial origin and, in most cases, independent from relative sea‐level or lake‐level oscillations. Preserved facies distributions record the depositional response to a combination of allogenic factors, including tectonics, climate and landscape evolution. Tectonics drive fluvial aggradation and degradation through local changes in gradient, both longitudinal and transverse to the valley slope. This article deals with a Pliocene–Pleistocene fluvial valley fill developed in the north‐eastern shoulder of the Siena Basin (Northern Apennines, Italy). Evolution of the valley was not influenced by sea‐level or lake‐level changes and morphological and depositional evolution of valley resulted from extensional tectonics that gave rise to normal and oblique‐slip faults orthogonal and parallel to the valley axis. Data from both field observations and geophysical study are interpreted to develop a comprehensive tectono‐sedimentary model of coeval longitudinal and lateral tilting of the developing alluvial plain. Longitudinal tilting was generated by a transverse, upstream‐dipping normal fault that controlled the aggradation of fining‐upward strata sets. Upstream of the fault zone, valley back‐filling generated an architecture similar to that of classic, sea‐level‐controlled, coastal incised valleys. Downstream of the fault zone, valley down‐filling was related to an overwhelming sediment supply sourced and routed from the active fault zone itself. Lateral tilting was promoted by the activity of a fault oriented parallel to the valley axis, as well as by different offsets along near orthogonal faults. As a result, the valley trunk system experienced complex lateral shifts, which were governed by interacting fault‐generated subsidence and by the topographic confinement of progradational, flank‐sourced alluvial fans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号