首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   1篇
地质学   7篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
We have studied the phase transformation of forsterite to wadsleyite under shear stress at the Earth's transition zone pressure and temperature conditions. Two-step experiments were performed using a multi-anvil press. First, we hot pressed iron-free forsterite at 6 or 11 GPa and 1100 °C. Then we deformed a slab of this starting material using a direct simple shear assembly at 16 GPa and 1400 °C for 1, 15, 35, 40, or 60 min. Both the starting material and the deformed samples were characterized using optical and scanning electron microscopy including measurements of crystal preferred orientations (CPO) by electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The phase transformation occurs very rapidly, in less than 1 min, and metastable forsterite relics are not observed after deformation. The grain size of wadsleyite is slightly smaller than the forsterite starting material. The water contents obtained from FTIR analyses in forsterite and wadsleyite are 65–124 wt ppm H2O and 114–736 wt ppm H2O, respectively, which are well below water solubility at similar conditions in the presence of free water. Wadsleyite aggregates display weak CPO patterns with [1 0 0] axes concentrated at low angle to the shear direction, [0 1 0] axes perpendicular to the shear plane and nearly random [0 0 1] axes. Only a few dislocations were observed in wadsleyite with TEM. This observation is consistent with the assumption that most dislocations formed during the initial high-stress stages of these stress-relaxation experiments, were consumed in the phase transformation, probably enhancing the transformation rate. CPO patterns vary as a function of the water content: with increasing water content the density of [1 0 0] axes parallel to the shear direction decreases, and the density of [0 0 1] axes increases. Viscoplastic self-consistent modeling of CPO evolution using previously reported glide systems for wadsleyite, i.e., [1 0 0]{0 k l} and 1/2 〈1 1 1〉{1 0 1}, cannot reproduce the measured CPO, unless the [0 0 1](0 1 0) system, for which dislocations have not been observed by TEM, is also activated. In addition, wadsleyite grain growth suggests the participation of diffusion-assisted processes in deformation. Calculated anisotropies for P and S-waves using measured CPO are always below 1%. This very low anisotropy is due to both the low finite strain achieved in the experiments, which leads to weak wadsleyite CPO, and to the diluting effect of added majorite. The present experiments emphasize the importance of stress, grain size evolution and water content in the forsterite to wadsleyite phase transformation and subsequent deformation in the transition zone.  相似文献   
2.
A San Carlos olivine polycrystal has been deformed under uppermost mantle conditions, by compression at 900 °C, at a strain rate of 1.1 × 10?5 s?1, under a confining pressure of 300 MPa, using the Paterson press. Transmission electron tomography of dislocations has been performed by scanning transmission electron microscopy, by conventional transmission electron microscopy using the weak-beam dark-field technique, associated with precession or not, in order to determine the glide planes of [001] screw dislocations. This recent technique is the most suitable one since most [001] dislocations exhibit straight screw segments due to the high lattice friction on this character at low temperature. We find that [001] dislocations glide in (100), (010) and {110} as already reported, but also more unexpectedly in {120} and {130}. We show that at 900 °C, [001] {110} glide is dominant in polycrystals. We have, however, noted and characterized numerous cross-slip events in the specimen.  相似文献   
3.
Hydrogen can be stored in the structure of nominally anhydrous minerals as point defects, and these impurities substantially modify many physical properties of Earth’s mantle minerals. However, mantle rocks are composed of mineral grains separated by grain boundaries and interphase grains boundaries. Therefore, as a potential hydrogen reservoir, grain boundaries should be given proper attention. Here, I report an experimental investigation into hydrogen diffusion through grain boundaries in polycrystalline aggregates. Sintering and diffusion experiments were performed using a gas-medium high-pressure vessel at under pressure of 300 MPa and over a temperature range of 900–1,250°C. The diffusion assembly consisted of a polycrystalline cylinder of aluminous spinel + olivine crystals with a talc cylinder as the main hydrogen source. A Ni capsule was used to buffer the oxygen fugacity at Ni–NiO. Experimental durations varied from 5 min to 5 h. The presence of hydrogen in the crystals was measured by Fourier-transform infrared spectroscopy. The calculation of the diffusion coefficients was based on the estimation of the characteristic distance. The absence or presence of hydrogen recorded by the ‘hydrogen sensor’ olivines embedded in the aggregate allows the estimation of bounds on this characteristic distance. Results presented here suggest that hydrogen effective diffusion coefficients are only one order of magnitude faster (~10−9 m2s−1 at 1,000°C) than in an olivine single crystal along the [100] axis. Resulting diffusion coefficients for hydrogen in grain boundary are four orders of magnitude faster than in a single crystal, but this diffusivity is not fast enough to affect hydrogen mobility in mantle rocks with grain sizes greater than ~1 mm. Thus, very limited chemical homogenization would occur using grain boundaries diffusion in mantle hydrous peridotite for incompatible and volatile element, such as hydrogen.  相似文献   
4.
Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine   总被引:1,自引:1,他引:0  
The incorporation and diffusion of hydrogen in San Carlos olivine (Fo90) single crystals were studied by performing experiments under hydrothermal conditions. The experiments were carried out either at 1.5 GPa, 1,000°C for 1.5 h in a piston cylinder apparatus or at 0.2 GPa, 900°C for 1 or 20 h in a cold-seal vessel. The oxygen fugacity was buffered using Ni–NiO, and the silica activity was buffered by adding San Carlos orthopyroxene powders. Polarized Fourier transform infrared (FTIR) spectroscopy was utilized to quantify the hydroxyl distributions in the samples after the experiments. The resulting infrared spectra reproduce the features of FTIR spectra that are observed in olivine from common mantle peridotite xenoliths. The hydrogen concentration at the edges of the hydrogenated olivine crystals corresponds to concentration levels calculated from published water solubility laws. Hydrogen diffusivities were determined for the three crystallographic axes from profiles of water content as a function of position. The chemical diffusion coefficients are comparable to those previously reported for natural iron-bearing olivine. At high temperature, hydrogenation is dominated by coupled diffusion of protons and octahedrally coordinated metal vacancies where the vacancy diffusion rate limits the process. From the experimental data, we determined the following diffusion laws (diffusivity in m2 s−1, activation energies in kJ mol−1): for diffusion along [100] and [010]; for diffusion along [001]. These diffusion rates are fast enough to modify significantly water contents within olivine grains in xenoliths ascending from the mantle.  相似文献   
5.
Interdiffusion of Fe and Mg in (Mg,Fe)O has been investigated experimentally under hydrous conditions. Single crystals of MgO in contact with (Mg0.73Fe0.27)O were annealed hydrothermally at 300 MPa between 1,000 and 1,250°C and using a Ni–NiO buffer. After electron microprobe analyses, the dependence of the interdiffusivity on Fe concentration was determined using a Boltzmann–Matano analysis. For a water fugacity of ∼300 MPa, the Fe–Mg interdiffusion coefficient in Fe x Mg1−x O with 0.01 ≤ x ≤ 0.25 can be described by with and C = −80 ± 10 kJ mol−1. For x = 0.1 and at 1,000°C, Fe–Mg interdiffusion is a factor of ∼4 faster under hydrous than under anhydrous conditions. This enhanced rate of interdiffusion is attributed to an increased concentration of metal vacancies resulting from the incorporation of hydrogen. Such water-induced enhancement of kinetics may have important implications for the rheological properties of the lower mantle.
Sylvie DemouchyEmail:
  相似文献   
6.
Water diffusion in synthetic iron-free forsterite   总被引:2,自引:1,他引:2  
The kinetics of hydrogenation of dry synthetic forsterite single crystals was determined by performing experiments under hydrothermal conditions. The experiments were performed at 1.5 GPa, 1000 °C for 3 h in a piston-cylinder apparatus, or at 0.2 GPa, 900–1110 °C, for 3–20 h in TZM cold-seal vessels. The oxygen fugacity was buffered using Fe–FeO or Ni–NiO powders. Polarized Fourier transform infrared spectroscopy was utilized to quantify the hydroxyl distributions in the samples after the experiments. Hydrogenation rates were measured parallel to the three crystallographic axes from profiles of water content as a function of position in the samples. The chemical diffusion coefficients are marginally slower than in natural iron-bearing olivine for the same diffusion process, but the anisotropy of diffusion is the same, with the [001] axis the fastest direction of diffusion and [100] the slowest. Fits of the diffusion data to an Arrhenius law yield similar activation energies for each of the crystallographic axes; a global fit to all the diffusion data gave 211 ± 18 kJ mol–1, in reasonable agreement with the previous results for natural olivine. Thus hydrogenation most likely occurs by coupled diffusion of protons and octahedrally coordinated metal vacancies. The diffusion rates are fast enough to modify water contents within xenoliths ascending from the mantle, but probably too slow to permit a total equilibration of forsterite or olivine crystals.  相似文献   
7.
Olivine is the principal mineral of kimberlite magmas, and isthe main contributor to the ultramafic composition of kimberliterocks. Olivine is partly or completely altered in common kimberlites,and thus unavailable for studies of the origin and evolutionof kimberlite magmas. The masking effects of alteration, commonin kimberlites worldwide, are overcome in this study of theexceptionally fresh diamondiferous kimberlites of the Udachnaya-Eastpipe from the Daldyn–Alakit province, Yakutia, northernSiberia. These serpentine-free kimberlites contain large amountsof olivine (50 vol.%) in a chloride–carbonate groundmass.Olivine is represented by two populations (olivine-I and groundmassolivine-II) differing in morphology, colour and grain size,and trapped mineral and melt inclusions. The large fragmentalolivine-I is compositionally variable in terms of major (Fo85–94)and trace element concentrations, including H2O content (10–136ppm). Multiple sources of olivine-I, such as convecting andlithospheric mantle, are suggested. The groundmass olivine-IIis recognized by smaller grain sizes and perfect crystallographicshapes that indicate crystallization during magma ascent andemplacement. However, a simple crystallization history for olivine-IIis complicated by complex zoning in terms of Fo values and traceelement contents. The cores of olivine-II are compositionallysimilar to olivine-I, which suggests a genetic link betweenthese two types of olivine. Olivine-I and olivine-II have oxygenisotope values (+ 5·6 ± 0·1 VSMOW, 1 SD)that are indistinguishable from one another, but higher thanvalues (+ 5·18 ± 0·28) in ‘typical’mantle olivine. These elevated values probably reflect equilibriumwith the Udachnaya carbonate melt at low temperatures and 18O-enrichedmantle source. The volumetrically significant rims of olivine-IIhave constant Fo values (89·0 ± 0·2 mol%),but variable trace element compositions. The uniform Fo compositionsof the rims imply an absence of fractionation of the melt'sFe2+/Mg, which is possible in the carbonatite melt–olivinesystem. The kimberlite melt is argued to have originated inthe mantle as a chloride–carbonate liquid, devoid of ‘ultramafic’or ‘basaltic’ aluminosilicate components, but becameolivine-laden and olivine-saturated by scavenging olivine crystalsfrom the pathway rocks and dissolving them en route to the surface.During emplacement the kimberlite magma changed progressivelytowards an original alkali-rich chloride–carbonate meltby extensively crystallizing groundmass olivine and gravitationalseparation of solids in the pipe. KEY WORDS: kimberlite; olivine; partial melting; carbonatitic melt; oxygen isotopes; H2O  相似文献   
8.
The hydrogen content of nominally anhydrous minerals is of great interest, because it can influence many physical and mechanical properties of mantle rocks. Moreover, the hydrogen diffusion profiles can be used to constrain timescales related to magma eruptions. Here, we report models of ionic diffusion for trace elements in anisotropic crystals and apply them to hydrogen diffusing out of mantle-derived olivine. We first compare and discuss the characteristics of 1D and 3D models and show that only 3D anisotropic diffusion models can lead to diffusion profiles exhibiting non-equilibrium plateau at the center of the solid along the slowest axis, as measured in natural samples. In a second part, we discuss the differences between hydration and dehydration of olivine for diffusion that is linked to two different atomic sites involved in hydrogen mobility. Finally, we apply our 3D anisotropic model to previous results on mantle-derived olivine from Pali-aike to better characterize diffusion coefficients and their anisotropy that could be relevant for dehydration of olivine. Our results show that dehydration has to be strongly anisotropic, with a fast [100] axis and a significantly slower [001] axis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号