首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
大气科学   5篇
地球物理   5篇
地质学   3篇
天文学   1篇
自然地理   5篇
  2021年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2001年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1964年   1篇
排序方式: 共有19条查询结果,搜索用时 312 毫秒
1.
One of the most promising developments for early warning of climate hazards is seasonal climate forecasting. Already forecasts are operational in many parts of the tropics and sub-tropics, particularly for droughts and floods associated with ENSO events. Prospects for further development of seasonal forecasting for a range of climatichazards are reviewed, illustrated with case studies in Africa, Australia, the U.S.A. and Europe. A critical evaluation of the utility of seasonal forecasts centres on vulnerability, communicationchannels, and effective responses. In contrast to short-term prediction, seasonal forecasts raise new issues of preparedness and the use of information.  相似文献   
2.
It has been observed for several years that semi-logarithmic plots of the baseflow recession for many streams which partially penetrate aquifers in the United Kingdom are not single straight-line plots. Simple modelling studies indicate that this behaviour, for typical values of aquifer parameters, occurs for even the simplest of groundwater systems. In general such studies show that the baseflow component arising from even a structurally uncomplicated aquifer should be viewed as a superposition of many, distinct exponential terms. The origin of these terms does not necessarily lie in a varied hydrogeological structure, but can arise purely from the dynamics of groundwater flow. Such a form for the baseflow recession can be used to perform empirical fits to observed data. Moreover, where more than one exponential term is contributing to the total baseflow, great care must be taken in the interpretation of associated data.  相似文献   
3.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
4.
In arid countries worldwide, social conflicts between irrigation-based human development and the conservation of aquatic ecosystems are widespread and attract many public debates. This research focuses on the analysis of water and agricultural policies aimed at conserving groundwater resources and maintaining rural livelihoods in a basin in Spain's central arid region. Intensive groundwater mining for irrigation has caused overexploitation of the basin's large aquifer, the degradation of reputed wetlands and has given rise to notable social conflicts over the years. With the aim of tackling the multifaceted socio-ecological interactions of complex water systems, the methodology used in this study consists in a novel integration into a common platform of an economic optimization model and a hydrology model WEAP (Water Evaluation And Planning system). This robust tool is used to analyze the spatial and temporal effects of different water and agricultural policies under different climate scenarios. It permits the prediction of different climate and policy outcomes across farm types (water stress impacts and adaptation), at basin's level (aquifer recovery), and along the policies’ implementation horizon (short and long run). Results show that the region's current quota-based water policies may contribute to reduce water consumption in the farms but will not be able to recover the aquifer and will inflict income losses to the rural communities. This situation would worsen in case of drought. Economies of scale and technology are evidenced as larger farms with cropping diversification and those equipped with modern irrigation will better adapt to water stress conditions. However, the long-term sustainability of the aquifer and the maintenance of rural livelihoods will be attained only if additional policy measures are put in place such as the control of illegal abstractions and the establishing of a water bank. Within the policy domain, the research contributes to the new sustainable development strategy of the EU by concluding that, in water-scarce regions, effective integration of water and agricultural policies is essential for achieving the water protection objectives of the EU policies. Therefore, the design and enforcement of well-balanced region-specific polices is a major task faced by policy makers for achieving successful water management that will ensure nature protection and human development at tolerable social costs. From a methodological perspective, this research initiative contributes to better address hydrological questions as well as economic and social issues in complex water and human systems. Its integrated vision provides a valuable illustration to inform water policy and management decisions within contexts of water-related conflicts worldwide.  相似文献   
5.
The Intergovernmental Panel on Climate Change (IPCC) completed its first round of assessments of the science, impacts and response to climate change in 1990. In 1992, the IPCC pulled together updates to the first round of reports (J. Houghton, G.J. Jenkins and J.J. Ephraums, eds, Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, 1990; W.J. McG. Tegart, G.W. Sheldon and D.C. Griffiths, eds, Climate Change: The IPCC Impacts Assessment, Australian Government Publishing Service, Canberra, 1990). At the same time, the literature on the potential impacts of climate change has expanded enormously. Four volumes are reviewed here.  相似文献   
6.
Edible fish species were collected from 13 locations throughout San Francisco Bay, during the spring of 1994, for determination of contaminant levels in muscle tissue. Species collected included white croaker, surfperch, leopard and brown smoothhound sharks, striped bass, white sturgeon and halibut. 66 composite tissue samples were analysed for the presence of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (P0CBs), pesticides, trace elements and dioxin/furans. The US EPA approach to assessing chemical contaminant data for fish tissue consumption was used for identifying the primary chemicals of concern. Six chemicals or chemical groups were found to exceed screening values (SVs) established using the US EPA approach. PCBs (as total Aroclors) exceeded the screening level of 3 ng g−1 in all 66 muscle tissue samples, with the greatest concentrations (638 ng g−1) found near San Francisco's industrial areas. Mercury was elevated (> 0.14 μg g−1) in 40 of 66 samples with the greatest concentrations (1.26 μg g−1) occurring in shark muscle tissues. Concentrations of the organochlorine pesticides dieldrin, total chlordane and total dichlorodiphenyltri-chloroethane (DDT) exceeded screening levels in a number of samples. Dioxin/furans (as toxic equivalent concentrations (TEQ's)) were elevated (> 0.15 pg g−1) in 16 of the 19 samples analysed. Fish with high lipid content (croaker and surfperch) in their muscle tissue generally exhibited higher organic contaminant levels while fish with low lipid levels (halibut and shark) exhibited lower organic contaminant levels. Tissue samples taken from North Bay stations most often exhibited high levels of chemical contamination. The California Office of Health Hazard Assessment is currently evaluating the results of this study and has issued an interim Health Advisory concerning the human consumption of fish tissue from San Francisco Bay.  相似文献   
7.
CASPIR is a near-infrared spectrometer/imager being built for the Mount Stromlo and Siding Spring Observatories' 2.3 m telescope. The instrument is based on a SBRC 256×256 InSb detector array and uses AR-coated Sapphire, MgO, CaF2, and BaF2 optics to produce two imaging focal plane scales with 0.5/pixel and 0.25/pixel. Spectral resolving powers of 500 will be achieved through a 1×128 slit with three grisms designed for the J, H, and K bands. IJ, JH, and HK cross-dispersed échelle grisms will achieve resolving powers of 1100 through a 1×15 slit. Coronograph and imaging polarimetry modes will also be available. The various observing configurations are selected via five remotely controlled wheels. The instrument design and system architecture are discussed, and preliminary detector performance figures reported.  相似文献   
8.
Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability (<1 day) on DOM dynamics. This study examined whether diurnal processes measurably altered DOM concentration and composition in the hypereutrophic San Joaquin River (California) during a relatively quiescent period. We evaluated the efficacy of using optical in situ measurements to reveal changes in DOM which may not be evident from bulk dissolved organic carbon (DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll‐a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290–350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically‐mediated processes. The results of this study highlight that short‐term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short‐term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
9.
Biological soil crusts cover large areas of the Gurbantunggut Desert in northwestern China where they make a significant contribution to soil stability and fertility. The aim of this study was to quantify the potential nitrogen-fixing activity (NA) of different types of biological soil crusts in the Gurbantunggut Desert. The results suggest that NA (nmol C2H4 m?2 h?1) for each type of crusts was highly variable. Seasonal variation was also important, with all three types of crusts responding in a similar way to changes in environmental conditions. From March to May, NA was relatively low for all crust types. During this season, NA was 2.26 × 103 for cyanobacterial crust followed by lichen crust (6.54 × 102) and moss crust (6.38 × 102). From June to October, all crust types reached their highest level of NA, especially lichen crust and moss crust (p < 0.01). The NA of cyanobacterial crust (9.81 × 103) was higher than that of lichen crust (9.06 × 103) and moss crust (2.03 × 103). From November to February, when temperatures were consistently low (<0 °C), NA was at its lowest level, especially in cyanobacterial crust (4.18 × 102) and moss crust (5.43 × 102) (p < 0.01). Our results indicate that species composition is critical when estimating N inputs in desert ecosystems. In addition, all three types of crusts generally responded in a similar way to environmental conditions. The presence of N fixation activity in all crusts may contribute to the maintenance of fertility in sparsely vegetated areas and provide surrounding vascular plant with fixed nitrogen.  相似文献   
10.
We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM??representative of particle-associated and filter-passing Hg, respectively??together predicted 94?% of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005?C2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号