首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   7篇
  国内免费   2篇
测绘学   2篇
大气科学   17篇
地球物理   41篇
地质学   110篇
海洋学   12篇
天文学   4篇
综合类   1篇
自然地理   2篇
  2024年   1篇
  2023年   1篇
  2022年   9篇
  2021年   11篇
  2020年   10篇
  2019年   5篇
  2018年   13篇
  2017年   12篇
  2016年   36篇
  2015年   12篇
  2014年   16篇
  2013年   15篇
  2012年   14篇
  2011年   9篇
  2010年   1篇
  2009年   9篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  1998年   1篇
  1995年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有189条查询结果,搜索用时 453 毫秒
1.
2.
The estimation of wave transmission across the fractured rock masses is of great importance for rock engineers to assess the stability of rock slopes in open pit mines. Presence of fault, as a major discontinuity, in the jointed rock mass can significantly impact on the peak particle velocity and transmission of blast waves, particularly where a fault contains a thick infilling with weak mechanical properties. This paper aims to study the effect of fault properties on transmission of blasting waves using the distinct element method. First, a validation study was carried out on the wave transmission across a single joint and different rock mediums through undertaking a comparative study against analytical models. Then, the transmission of blast wave across a fault with thick infilling in the Golgohar iron mine, Iran, was numerically studied, and the results were compared with the field measurements. The blast wave was numerically simulated using a hybrid finite element and finite difference code which then the outcome was used as the input for the distinct element method analysis. The measured uplift of hanging wall, as a result of wave transmission across the fault, in the numerical model agrees well with the recorded field measurement. Finally, the validated numerical model was used to study the effect of fault properties on wave transmission. It was found that the fault inclination angle is the most effective parameter on the peak particle velocity and uplift. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
3.
Screening bioactive natural products from bacteria is a determinative step in the drug discovery programs. The present study aim to isolate actinobacteria from the Oman Sea sediments for determining the effects of different culture media and treatments on the yield of the isolation process, and measure the DPPH radical scavenging and Artemia cytotoxic activity of culture extracts of the actinobacterial isolates. A total of 290 actinobacterial isolates were collected from 14 sediment samples. Heat treatment(40.68%) and M_4 medium(29.31%) exhibited the maximum isolation rates of actinobacteria. Streptomyces isolates were dominantly distributed in all of the investigated stations according to 16 S rRNA gene sequencing. The distribution pattern of Streptomyces followed a depth-dependent frequency trend, whereas the members of rare genera including Micromonospora, Nocardia Actinoplanes, Nocardiopsis, Saccharopolyspora and Crossiella were distributed in deeper stations. Approximately,25% of the examined isolates could scavenge 90% of 10~(–4) mol/L DPPH solutions at 1 250 μg/mL final concentration of their ethyl acetate culture extracts. Furthermore, the most potent extracts could scavenge DPPH radicals with IC50 ranges from 356.8 to 566.4 μg/mL. Brine shrimp cytotoxicity tests showed that 38.88% of the examined culture extracts exhibited LC_(50) lower than 1 000 μg/mL against the Artemia cells. Moreover, the most potent culture extracts exhibited LC_(50) range from 335.4 to 534.4 μg/mL. Phylogenetic analysis by 16 S rRNA gene sequence revealed that the OS 005, OS 263 and OS 157 closely related to Streptomyces djakartensis, Streptomyces olivaceus and Nocardiopsis dassonvillei respectively. These results suggested the widespread distribution of the antioxidant and cytotoxic producing actinobacteria in the Oman Sea sediments, which could be considered as promising candidates for the discovery of microbial bioactive compounds.  相似文献   
4.
Dragline is highly capital intensive equipment to procure, operate and maintain in any surface mining operation. Given this, every second of operation of this capital intensive equipment is absolutely important. Improvement of even a single second in the total cycle time has a tremendous bearing on the overall performance of this equipment. In this light, the present paper is an endeavour to critically analyze the cycle time of dragline operations in a major surface coal mine in India. Rigorous statistical analysis has been performed on individual cycle time segments, of complete dragline cycle. The segmental cycle times have been found to be statistically significant and appear to be best represented by lognormal, normal and beta distributions. Furthermore, the mean time of the statistical distribution for segmental cycle time of dragline has revealed the dependence of cycle time on cut geometry and depth. Results have been illustrated in the form of figures, graphs and tables.  相似文献   
5.
6.
An accurate estimate of the groundwater inflow to a tunnel is one of the most challenging but essential tasks in tunnel design and construction. Most of the numerical or analytical solutions that have been developed ignore tunnel seepage conditions, material properties and hydraulic-head changes along the tunnel route during the excavation process, leading to inaccurate prediction of inflow rates. A method is introduced that uses MODFLOW code of GMS software to predict inflow rate as the tunnel boring machine (TBM) gradually advances. In this method, the tunnel boundary condition is conceptualized and defined using Drain package, which is simulated by dividing the drilling process into a series of successive intervals based on the tunnel excavation rates. In addition, the drain elevations are specified as the respective tunnel elevations, and the conductance parameters are assigned to intervals, depending on the TBM type and the tunnel seepage condition. The Qomroud water conveyance tunnel, located in Lorestan province of Iran, is 36 km in length. Since the Qomroud tunnel involved groundwater inrush during excavating, it is considered as a good case study to evaluate the presented method. The groundwater inflow to this tunnel during the TBM advance is simulated using the proposed method and the predicted rates are compared with observed rates. The results show that the presented method can satisfactorily predict the inflow rates as the TBM advances.  相似文献   
7.
Station recording air temperature (Ta) has limited spatial coverage, especially in unpopulated areas. Since temperature can change greatly both spatially and temporally, stations data are often inadequate for meteorology and subsequently climatology studies. Time series of moderate-resolution imaging spectroradiometer (MODIS) land surface temperature (Ts) and normalized difference vegetation index (NDVI) products, combined with digital elevation model (DEM), albedo from Era-Interim and meteorological data from 2006 to 2015, were used to estimate daily mean air temperature over Iran. Geographically weighted regression was applied to compare univariate and multivariate model accuracy. In the first model, which only interfered with land surface temperature (LST), the results indicate a weak performance with coefficient of determination up to 91% and RMSE of 1.08 to 2.9 °C. The mean accuracy of a four-variable model (which used LST, elevation, slope, NDVI) slightly increased (6.6% of the univariate model accuracy) when compared to univariate model. RMSE dropped by 19% of the first model. By addition albedo in the third model, the coefficient of determination increased significantly. This increase was 32% of the univariate model and 23.75% of the 4-variable model accuracy. The statistical comparison between the three models revealed that there is significant improvement in air estimation by applying the geographically weighted regression (GWR) method with interfering LST, NDVI, elevation, slope, and albedo with mean absolute RMSE of 0.62 °C and mean absolute R2 of 0.99. In order to better illustrate the third model, t values were spatially mapped at 0.05 level.  相似文献   
8.
ABSTRACT

Accurate runoff forecasting plays a key role in catchment water management and water resources system planning. To improve the prediction accuracy, one needs to strive to develop a reliable and accurate forecasting model for streamflow. In this study, the novel combination of the adaptive neuro-fuzzy inference system (ANFIS) model with the shuffled frog-leaping algorithm (SFLA) is proposed. Historical streamflow data of two different rivers were collected to examine the performance of the proposed model. To evaluate the performance of the proposed ANFIS-SFLA model, six different scenarios for the model input–output architecture were investigated. The results show that the proposed ANFIS-SFLA model (R2 = 0.88; NS = 0.88; RMSE = 142.30 (m3/s); MAE = 88.94 (m3/s); MAPE = 35.19%) significantly improved the forecasting accuracy and outperformed the classic ANFIS model (R2 = 0.83; NS = 0.83; RMSE = 167.81; MAE = 115.83 (m3/s); MAPE = 45.97%). The proposed model could be generalized and applied in different rivers worldwide.  相似文献   
9.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   
10.
ABSTRACT

We present zircon U-Pb crystallization ages combined with bulk rock major and trace element geochemistry and Sr-Nd-Pb and zircon in-situ Hf isotopic compositions of the Amand and Moro granitoid intrusions in northwest Iran. The Amand and Moro plutons include granite and syeno-diorite with LA-ICP-MS U-Pb zircon ages of 367 ± 6.8 Ma and 351 ± 1.3 Ma, respectively, representative of Late Devonian-Early Carboniferous magmatic activity in NW Iran. Geochemical characteristics such as typical enrichments in alkalis, Nb, Zr, Ga and Y, depletion in P and Sr and fractionated REE patterns with high Ga/Al ratios and Eu negative anomalies are consistent with A-type magmatic signatures. The granitoids are classified as A2-type and within-plate granitoids. The bulk rock geochemistry (enrichments in Th, Nb and, high Th/Yb, Zr/Y ratios) along with low variation of 143Nd/144Nd(i) and 87Sr/86Sr(i) ratios and positive zircon εHf(t) support the role of a mantle plume component for the evolution of the Amand and Moro A-type granitoids in an extensional tectonic environment. In fitting with wider regional knowledge, this magmatism occurred during Paleo-Tethys opening in northern Gondwana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号