首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
地球物理   9篇
地质学   3篇
海洋学   1篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2006年   2篇
  2005年   2篇
排序方式: 共有13条查询结果,搜索用时 390 毫秒
1.
2.
Analysis of monthly mean river temperatures, recorded on an hourly basis in the middle reaches of the Loire since 1976, allows reconstruction by multiple linear regression of the annual, spring and summer water temperatures from equivalent information on air temperatures and river discharge. Since 1881, the average annual and summer temperatures of the Loire have risen by approximately 0.8?°C, this increase accelerating since the late 1980s due to the rise in air temperature and also to lower discharge rates. In addition, the thermal regime in the Orleans to Blois reach is considerably affected by the inflow of groundwater from the Calcaires de Beauce aquifer, as shown by the summer energy balance. To cite this article: F. Moatar, J. Gailhard, C. R. Geoscience 338 (2006).  相似文献   
3.
The variability of water chemistry on a daily scale is rarely addressed due to the lack of records. Appropriate tools, such as typologies and dimensionless indicators, which permit comparisons between stations and between river materials, are missing. Such tools are developed here for daily concentrations (C), specific fluxes or yields (Y) and specific river flow (q). The data set includes 128 long‐term daily records, for suspended particulate matter (SPM), total dissolved solids (TDS), dissolved and total nutrients, totalling 1236 years of records. These 86 river basins (103–106 km2) cover a wide range of environmental conditions in semi‐arid and temperate regions. The segmentation—truncation of Cq rating curves into two parts at median flows (q50) generates two exponents (b50inf and b50sup) that are different for 66% of the analysed rating curves. After segmentation, the analysis of records results in the definition of nine major Cq types combining concentrating, diluting or stable patterns, showing inflexions, chevron and U shapes. SPM and TDS are preferentially distributed among a few types, while dissolved and total nutrients are more widely distributed. Four dimensionless indicators of daily variability combine median (C50, Y50), extreme (C99, Y99) and flow‐weighted (C*, Y*) concentrations and yields (e.g. C99/C50, Y*/Y50). They vary over two to four orders of magnitude in the analysed records, discriminating stations and river material. A second set of four indicators of relative variability [e.g. (Y*/Y50)/(q*/q50)], takes into account the daily flow variability, as expressed by q*/q50 and q99/q50, which also vary over multiple orders of magnitude. The truncated exponent b50sup is used to describe fluxes at higher flows accounting for 75% (TDS) to 97% (SPM) of interannual fluxes. It ranges from ? 0·61 to + 1·86 in the database. It can be regarded as the key amplificator (positive b50sup) or reductor (negative b50sup) of concentrations or yields variability. C50, Y50, b50sup can also be estimated in discrete surveys, which provides a new perspective for quantifying and mapping water quality variability at daily scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
Carbon and total suspended sediment (TSS) loads were investigated from April 2006 to March 2008 in the mountainous watershed of the Isère River, French Alps (5570 km2). The river bed has been highly impounded for hydroelectricity production during the last century. Hydraulic flushes are managed every year to prevent TSS storage within upstream dams. The Isère River has been instrumented for high‐frequency monitoring of water, TSS by turbidity and carbon (organic, inorganic, dissolved and particulate) in order to evaluate the impact of natural floods and hydraulic flushes on annual loads. Annual TSS load which was estimated between 1.3 and 2.3 MT y?1 (i.e. 233 to 413 T km?2 y?1) highlighted the high erodibility of the Isère watershed. Annual carbon load was estimated between 173 103 T y?1 and 199 103 T y?1 (i.e 31 to 36 T km?2 y?1). About 80% of the annual carbon loads were inorganic. The impact of hydraulic flushes on annual loads appeared limited (less than 3% for annual TSS load and about 1.5% for annual carbon load), whereas the most important natural flood event contributed to 20% of the annual TSS load and 10% of the annual carbon load. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Data on riverine fluxes are essential for calculating element cycles (carbon, nutrients, pollutants) and erosion rates from regional to global scales. At most water‐quality stations throughout the world, riverine fluxes are calculated from continuous flow data (q) and discrete concentration data (C), the latter being the main cause of sometimes large uncertainties. This article offers a comprehensive approach for predicting the magnitude of these uncertainties for water‐quality stations in medium to large basins (drainage basin area > 1000 km²) based on the commonly used discharge‐weighted method. Uncertainty levels – biases and imprecisions – for sampling intervals of 3 to 60 days are correlated first through a nomograph with a flux variability indicator, the quantity of riverine material discharged in 2% of time (M2%). In turn, M2% is estimated from the combination of a hydrological reactivity index, W2% (the cumulative flow volume discharged during the upper 2% of highest daily flow) and the truncated b50sup exponent, quantifying the concentration versus discharge relationship for the upper half of flow values (C = a q b50sup, for q > q50, where q50 is the median flow): M2% = W2% + 27.6b50sup. W2% can be calculated from continuous flow measurements, and the b50sup indicator can be calculated from infrequent sampling, which makes it possible to predict a priori the level of uncertainty at any station, for any type of riverine material either concentrated (b50sup > 0) or diluted (b50sup > 0) with flow. A large data base of daily surveys, 125 station variables of suspended particulate matter (SPM), total dissolved solids (TDS) and dissolved and particulate nutrients, was used to determine uncertainties from simulated discrete surveys and to establish relationships between indicators. Results show, for example, that for the same relatively reactive basin (W2% > 25%), calculated fluxes from monthly sampling would yield uncertainties approaching ±100% for SPM (b50sup > 1.4) fluxes and ±10% for TDS (b50sup = ?0.2). The application to the nitrate survey of the river Seine shows significant trends for the 1972–2009 records. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
6.
Volumes of sediments eroded and deposited during floods were quantified in a vegetated secondary channel of the Loire River at the study site of Bréhémont (France). The topographic survey highlights the temporal variability in filling of secondary channels. Upstream riffle of secondary channels governs sedimentary supply. In these channels, sediments show a by-passing in the lower parts and an accretion in the higher vegetated areas. The asymmetrical morphology is reinforced during both intense and moderate floods. Sedimentary accretion in the vegetated areas leads progressively to channel narrowing. To cite this article: S. Rodrigues et al., C. R. Geoscience 337 (2005).  相似文献   
7.
This paper investigates three categories of models that are derived from the equilibrium temperature concept to estimate water temperatures in the Loire River in France and the sensitivity to changes in hydrology and climate. We test the models' individual performances for simulating water temperatures and assess the variability of the thermal responses under the extreme changing climate scenarios that are projected for 2081–2100. We attempt to identify the most reliable models for studying the impact of climate change on river temperature (Tw). Six models are based on a linear relationship between air temperatures (Ta) and equilibrium temperatures (Te), six depend on a logistic relationship, and six rely on the closure of heat budgets. For each category, three approaches that account for the river's thermal exchange coefficient are tested. In addition to air temperatures, an index of day length is incorporated to compute equilibrium temperatures. Each model is analysed in terms of its ability to simulate the seasonal patterns of river temperatures and heat peaks. We found that including the day length as a covariate in regression‐based approaches improves the performance in comparison with classical approaches that use only Ta. Moreover, the regression‐based models that rely on the logistic relationship between Te and Ta exhibit root mean square errors comparable (0.90 °C) with those obtained with a classical five‐term heat budget model (0.82 °C), despite a small number of required forcing variables. In contrast, the regressive models that are based on a linear relationship Te = f(Ta) fail to simulate the heat peaks and are not advisable for climate change studies. The regression‐based approaches that are based on a logistic relationship and the heat balance approaches generate notably similar responses to the projected climate changes scenarios. This similarity suggests that sophisticated thermal models are not preferable to cruder ones, which are less time‐consuming and require fewer input data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
Currently, the distribution areas of aquatic species are studied by using air temperature as a proxy of water temperature, which is not available at a regional scale. To simulate water temperature at a regional scale, a physically based model using the equilibrium temperature concept and including upstream‐downstream propagation of the thermal signal is proposed. This model, called Temperature‐NETwork (T‐NET), is based on a hydrographical network topology and was tested at the Loire basin scale (105 km2). The T‐NET model obtained a mean root mean square error of 1.6 °C at a daily time step on the basis of 128 water temperature stations (2008–2012). The model obtained excellent performance at stations located on small and medium rivers (distance from headwater <100 km) that are strongly influenced by headwater conditions (median root mean square error of 1.8 °C). The shading factor and the headwater temperature were the most important variables on the mean simulated temperature, while the river discharge influenced the daily temperature variation and diurnal amplitude. The T‐NET model simulates specific events, such as temperature of the Loire during the floods of June 1992 and the thermal regime response of streams during the heatwave of August 2003, much more efficiently than a simple point‐scale heat balance model. The T‐NET model is very consistent at a regional scale and could easily be transposed to changing forcing conditions and to other catchments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
9.
Good estimates of pollutant fluxes are required for Earth systems sciences and water quality management. The gradual accumulation of water quality data records over the past few decades has increased the value of these data for examining long‐term trends. On many major rivers, however, infrequent sampling of most pollutants makes flux estimates and their analysis difficult. This paper explores the performance of different methods for estimating nutrient fluxes. The objective is to assess the accuracy (bias) and precision (dispersion) of annual nutrient fluxes based on monthly sampling, which is the frequency with which 80% of French water quality surveys have been carried out since 1971. The study is based on a data set of nutrient concentrations surveyed at high frequency during a 5 year pilot study (1981–85) at the Orléans station in the middle reaches of the River Loire, France. The mean specific fluxes were 641 (nitrate‐N), 96 (total‐P) and 37 kg year−1 km−2 (orthophosphate‐P). For each year, the data set was then ‘resampled’ by randomly simulating 12 sampling dates. 100 simulated monthly samplings were generated, upon which seven estimation methods were tested. The evaluations indicate that, when concentrations of specific substances in large rivers exhibit seasonal variation, a simple method based on linear interpolation between samples taken at approximately monthly intervals is advocated. With the monthly sampling interval, the precision (confidence level of 95%) of annual nutrient fluxes obtained by the appropriate methods was 13% for nitrates, 20% for total‐P, 26% for orthophosphates, and 34% for particulate‐P. The frequency of water quality surveys required to obtain an annual nutrient flux with 10% precision was around 15 days for nitrate, 10 days for orthophosphate‐P and total‐P, and about 5 days in the case of particulate‐P. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
10.
Abstract

In discrete water quality surveys, riverine fluxes are associated with unknown uncertainties (biases and imprecisions). Annual flux errors have been determined from the generation of discrete surveys by Monte Carlo sorting for monthly sampling, from 10 years of daily records (120 records). Eight calculation methods were tested for suspended particulate matter, dissolved solids and dissolved and total nutrients in medium to large basins (103 to 106 km2) covering a wide range of hydrological conditions and riverine biogeochemistry. The performance of each method was analysed first by type of riverine material, which appeared to be much less pertinent than the flux variability matrix. The latter combines the river flow duration in two percent of time (W2%) and the truncated exponent (b50sup) defining the relationship of concentration vs discharge (CQ) at higher flows (C = aQb50sup). As flux variability increases (high W2% and/or high b50sup), averaging and rating curve methods become less efficient compared to hydrograph separation methods. Flux biases and imprecisions were plotted in the [W2%, b50sup] matrix for discrete monthly surveys.

Editor Z. W. Kundzewicz

Citation Raymond, S., Moatar, F., Meybeck, M., and Bustillo, V., 2013. Choosing methods for estimating dissolved and particulate riverine fluxes from monthly sampling. Hydrological Sciences Journal, 58 (6), 1326–1339.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号