首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   21篇
  国内免费   32篇
测绘学   17篇
大气科学   63篇
地球物理   24篇
地质学   19篇
海洋学   7篇
综合类   32篇
自然地理   47篇
  2022年   6篇
  2021年   12篇
  2020年   6篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   9篇
  2008年   7篇
  2007年   16篇
  2006年   15篇
  2005年   20篇
  2004年   10篇
  2003年   17篇
  2002年   10篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
1.
基于DEM的地形简化方法对比分析   总被引:4,自引:0,他引:4  
地形简化作为一门重要的数据压缩技术已广泛应用于DEM。在大量简化算法中,地形简化指标作为地形简化的核心环节,其好坏直接关系到地形简化的好坏。本文对基于局部误差、曲率和法向量的五个地形简化指标进行了分析评价,用离散的高斯合成曲面来模拟真实DEM,以解析得到的高斯曲率作为地形简化指标“真值”,对比研究了在离散高斯曲面上得到的五个简化指标与解析所得“真值”,通过对各个指标“保特征性”可信度的分析,获得了对这五个指标的整体评价,最后,实例验证了本文结论的正确性。  相似文献   
2.
北京北部城区 SO2和NO2浓度垂直分布特点初探   总被引:11,自引:3,他引:11  
2001年1~3月在中国科学院大气物理研究所320 m铁塔10个不同高度(320、240、200、140、100、80、47、15、8 m和地面)使用无动力扩散采样器对SO2和NO2日平均总量及夜间平均浓度进行了观测.结果表明,200m以下高度SO2和NO2浓度较大.北京城区不同高度大气中SO2的浓度1月份最高.NO2浓度1月份和2月份呈现高值.不同高度SO2和NO2浓度与逆温强度有明显的正相关.  相似文献   
3.
城市大气环境边界层观测试验工程提出了城市区域大范围大气污染"空气穹隆"动力过程三维结构,首次揭示出北京周边地形"山谷风"与城市"热岛"效应相互作用对城市大气环境影响的综合特征.试验采用卫星遥感-地面观测相结合的技术方案,揭示北京周边地区污染贡献及其气溶胶远距离输送轨迹特征,提出建立北京及其周边地区点-面结合、卫星遥感-地面观测相结合立体综合监测网的设计新方案.该项目被世界气象组织专家组工作会议评为国际城市大气环境观测优秀示范计划,项目研究成果于2002年作为特邀撰稿发表于美国<环境与健康>(SCI),研究成果在北京市及有关省市推广应用.  相似文献   
4.
The Kotoda-Bortan (KB) model (Liu and Kotoda 1998) used for estimating evapotranspiration was modified.The monthly evapotranspiration for various surfaces in the Yangtze Delta (118-123°E,28-33°N) was calculated using the modified model,and the annual regional average of evapotranspiration from 1961 to 1998 was obtained using a weighting method.The spatial and temporal distribution characteristics of evapotranspiration were analyzed.It is found that the regional averaged annual evapotranspiration has a decreasing trend over the past 40 years;the value dropped by about 24mm from 1961 to 1998.The main reason for this tendency is due to the change of land surface condition.Compared with the case of 1980,the current proportions of paddy field,farmland and water surface have decreased by 1.353%,4.42% and 2.597% respectively,while the proportions of urban area and non-agriculture land have increased by 3.345%.These changes clearly result in a decrease of the regional averaged evapotranspiration.  相似文献   
5.
20 0 1~ 2 0 0 3年在北京实施了大气边界层动力、热力、化学综合观测试验 (BECAPEX ,BeijingCityAtmosphericPollutionObservationFieldExperiment) ,获取了北京城市大气动力和大气化学三维结构图像。综合观测试验分析研究发现 ,城市区域呈非均匀次生尺度热岛分布 ,并伴随着城市次生尺度环流 ,影响了局地空气污染物分布特征。MODIS卫星遥感 地面观测资料经过变分分析 ,可发现北京城市空气污染与周边区域影响源有密切关系 ,并影响城市群落环境气候特征 ,导致该区域日照、雾日、低云量和能见度呈显著年代际变化趋势。  相似文献   
6.
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in comparison with those at 8 m height. On pollution days, in company with the low wind speed, there existed two shallow inversion layers in the boundary layer, but aerosols might be, to some extent, mixed below the inversion layer, therefore, on the pollution day the concentrations of PM2.5 and PM10 dropped with height slowly; and the observational results also show that the concentrations at 320 m height were obviously high under SW and SE winds, but at other heights, the concentrations were not correlated with wind directions. The computational results of footprint analysis suggest that this was due to the fact that the 320 m height was impacted by the pollutants transfer of southerly flow from the southern peripheral heavier polluted areas, such as Baoding, and Shijiazhuang of Hebei Province, Tianjin, and Shandong Province, etc., while the low layer was only affected by Beijing's local pollution source. The computational results of power spectra and periods preliminarily reveal that under the condition of calm weather, the periods of PM10 concentration at various heights of the tower were on the order of minutes, while in cases of larger wind speed, the concentrations of PM2.5 and PM10 at 320 m height not only had the short periods of minute-order, but also the longer periods of hour order. Consistent with the conclusion previously drawn by Ding et al., that air pollutants at different heights and at different sites in Beijing had the character of "in-phase" variation, was also observed for the diurnal variation and mean diurnal variation of PM2.5 and PM10 at various heights of the tower in this experiment, again confirming the "in-phase" temporal/spatial distributive character of air pollutants in the urban canopy of Beijing. The gentle double-peak character of the mean diurnal variation of PM2.5 and PM10 was closely related with the evident/similar diurnal variation of turbulent momentum fluxes, sensible heat fluxes, and turbulent kinetic energy at various heights in the urban canopy. Besides, under the condition of calm weather, the concentration of PM2.5 and PM10 declined with height slowly, it was 90% of 8 m concentration at the low layer, a little lesser than 90% at the middle layer, and 80% at the high layer, respectively. Under the condition of weak cold air weather, the concentration remarkably dropped with height, it was 70% of 8 m concentration at the low layer, and 20%―30% at the middle and high layers, especially the concentration of PM2.5 was even lower.  相似文献   
7.
The spatial/temporal variation information of atmospheric dynamic-chemical processes at observation site points of the "canopy" boundary of Beijing urban building ensemble and over urban area "surface", as well as the seasonal correlation structure of the gaseous and particulate states of urban atmospheric pollution (UAP) and its seasonal conversion feature at observation points are investigated, using the comprehensive observation data of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter and summer 2003 with a "point-surface" combined research approach. By using "one dimension spatial empirical orthogonal function (EOF)" principal component analysis (PCA) mode, the seasonal change of gaseous and particulate states of atmospheric aerosols and the association feature of pollutant species under the background of the complicated structure of urban boundary layer (UBL) are analyzed. The comprehensive analyses of the principal components of particle concentrations,gaseous pollutant species, and meteorological conditions reveal the seasonal changes of the complex constituent and structure features of the gaseous and particulate states of UAP to further trace the impact feature of urban aerosol pollution surface sources and the seasonal difference of the component structure of UAP. Research results suggest that in the temporal evolution of the gaseous and particulate states of winter/summer UAP, NOx, CO, and SO2 showed an "in-phase" evolution feature, however, O3 showed an "inverse-phase" relation with other species,all possessing distinctive dependent feature. On the whole, summer concentrations of gaseous pollutants CO, SO2, and NOx were obviously lower than winter ones, especially, the reduction in CO concentration was most distinctive, and ones in SO2 and NOx were next. However, the summer O3 concentration was more than twice winter one. Winter/summer differences in PM10and PM2.5 particle concentrations were relatively not obvious, which indicates that responses of PM10 and PM2.5 particle concentrations to the difference of winter/summer heating period emission sources are far less distinctive than those of NOx, SO2, and CO. The correlation feature of winter/summer gaseous and particulate states depicts that both PM10 and PM2.5 particles were significantly correlated with NOx, and their correlations with NOx are more significant than those with other pollutants. Through PCA, it is found that there was a distinctive difference in the principal component combination structure of winter/summer PM10 and PM2.5 particles: SO2 and NOx dominated in the principal component of winter PM10 and PM2.5 particles; while CO and NOx played the major role in the principal component of summer PM10 and PM2.5 particles. For winter/summer PM10 and PM2.5 particles, there might exist the gaseous and particulate states correlation structures of different "combinations" of such dependent pollutant species. Research results also uncover that the interaction processes of gaseous and particulate states were also related with the vertical structure of UBL, that is to say, the low value layer of UBL O3 concentration was associated with the collocation of atmospheric vertical structures of the low level inversion,inverse humidity, and small wind, which depicts summer boundary layer atmospheric character, i.e.the compound impact of the dependent factor "combination" of wind, temperature, and humidity elements and their collocation structure on the variations of different gaseous pollutant concentrations. Such a depth structure of the extremely low value of O3 concentration in the UBL accords with its "inverse-phase" relation with other gaseous pollutant species. The PCA of meteorological factors associated with PM10 and PM2.5 concentrations also reveals the sensitivity of PM10 and PM2.5 concentration to the combinatory feature of local meteorological conditions.  相似文献   
8.
Based on analysis of the air pollution observational data at 8 observation sites in Beijing including outer suburbs during the period from September 2004 to March 2005, this paper reveals synchronal and in-phase characteristics in the spatial and temporal variation of air pollutants on a city-proper scale at deferent sites; describes seasonal differences of the pollutant emission influence between the heating and non-heating periods, also significantly local differences of the pollutant emission influence between the urban district and outer suburbs, i.e. the spatial and temporal distribution of air pollutant is closely related with that of the pollutant emission intensity. This study shows that due to complexity of the spatial and temporal distribution of pollution emission sources, the new generation Community Multi-scale Air Quality (CMAQ) model developed by the EPA of USA produced forecasts, as other models did, with a systematic error of significantly lower than observations, albeit the model has better capability than previous models had in predicting the spatial distribution and variation tendency of multi-sort pollutants. The reason might be that the CMAQ adopts average amount of pollutant emission inventory, so that the model is difficult to objectively and finely describe the distribution and variation of pollution emission sources intensity on different spatial and temporal scales in the areas, in which the pollution is to be forecast. In order to correct the systematic prediction error resulting from the average pollutant emission inventory in CMAQ, this study proposes a new way of combining dynamics and statistics and establishes a statistically correcting model CMAQ-MOS for forecasts of regional air quality by utilizing the relationship of CMAQ outputs with corresponding observations, and tests the forecast capability. The investigation of experiments presents that CMAQ-MOS reduces the systematic errors of CMAQ because of the uncertainty of pollution emission inventory and improves the forecast level of air quality. Also this work employed a way of combining point and area forecasting, i.e. taking the products of CMAQ for a center site to forecast air pollution for other sites in vicinity with the scheme of model products "reanalysis" and average over the "area".  相似文献   
9.
The loess landform in the Loess Plateau of China is with typical dual structure, namely, the upper smooth positive terrain and the lower cliffy negative terrain (P–N terrain for short). Obvious differences in their morphological feature, geomorphological mechanism, and hydrological process could be found in the both areas. Based on the differences, a flow‐routing algorithm that separately addresses the dual‐structure terrain would be necessary to encompass this spatial variation in their hydrological behaviour. This paper proposes a mixed flow‐routing algorithm to address aforementioned problems. First, the loess landform surface is divided into P–N terrains based on digital elevation models. Then, specific catchment area is calculated with the new algorithm to simulate the water flows in both positive and negative terrain areas. The mixed algorithm consists of the multiple flow‐routing algorithm (multiple‐flow direction) for positive areas and the D8 algorithm for negative areas, respectively. The approach is validated in two typical geomorphologic areas with low hills and dense gullies in the northern Shaanxi Loess Plateau. Four indices are used to examine the results, which show that the new algorithm is more suitable for loess terrain in simulating the spatial distribution of water accumulation, as well as in modeling the flow characteristics of the true surface by considering the morphological structures of the terrain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
云、雨水酸度和离子浓度与其微物理参数的关系   总被引:3,自引:0,他引:3       下载免费PDF全文
本文1987年5-6月和1989年5-6月庐山地区的实测资料,分析了云、雨水酸度和离子浓度与其微物理量间的关系。结果表明,云、雨滴大小、含水量、谱宽等微物理量的演变直接影响着其酸度和离子浓度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号