首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial structure and multi-scale feature of the atmospheric pollution influence domain of Beijing and its peripheral areas (a rapidly developed city agglomeration) is dissected and analyzed in this paper on the basis of the atmospheric pollution dynamic-chemical process observation data of the urban building ensemble boundary layer of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter (February) and summer (August) 2003, and relevant meteorological elements and satellite retrieval aerosol optical depth (AOD), etc. comprehensive data with the dynamic-statistical integrated analysis of "point-surface" spatial structure. Results show that there existed significant difference in the contribution of winter/summer different pollution emission sources to the component character of atmospheric pollution, and the principal component analysis (PCA) results of statistical model also indicate that SO2 and NOX dominated in the component structure of winter aerosol particle; instead, CO and NOX dominated in summer. Surface layer atmospheric dynamic and thermal structures and various pollutant species at the upper boundary of building ensembles at urban different observational sites of Beijing in winter and summer showed an "in-phase" variation and its spatial scale feature of "influence domain". The power spectrum analysis (PSA) shows that the period spectrum of winter/summer particle concentration accorded with those of atmospheric wind field: the longer period was dominative in winter, but the shorter period in summer, revealing the impact of the seasonal scale feature of winter/summer atmospheric general circulation on the period of atmospheric pollution variations. It is found that from analyzing urban area thermal heterogeneity that the multiscale effect of Beijing region urban heat island (UHI) was associated with the heterogeneous expansion of tall buildings area. In urban atmospheric dynamical and thermal characteristic spatial structures, the turbulent scale feature of the urban boundary layer (UBL) of architectural complexes had important impact on the multi-scale feature of urban atmospheric pollution. The comprehensive analyses of the variational analysis field of Moderate Resolution Imaging Spectroradiometer (MODIS) AOD-surface PM10 under the condition of clear sky and the correlation resultant wind vector field for pollution source-tracing suggest that the emission sources for winter Beijing atmospheric pollution aerosols particle might be remotely traced to the south peripheral greater-scale spatial range of Hebei, Shandong, Tianjin, etc., and the spatial distribution of the high value area of AOD was associated with that of the high value area of resident family number (heating surface source). The backward trajectory feature of winter/ summer air particles exhibits analogous multi-scale feature, and depicts the difference in the scale feature of the pollution sources spatial distribution in different seasons. The peripheral source trajectory paths of urban atmospheric pollution (UAP) mainly come from the fixed industrial surface source or heating surface source in the outskirt of Beijing, and the diffusion and transport distance of peripheral sources in winter is larger than one in summer. The above conclusions depict the multi-scale spatial influence domain and seasonal features caused by UAP source influence and atmospheric dynamical structure. The high value area of the winter Total Ozone Mapping Spectrometer (TOMS) AOD lay in the Beijing region and its south peripheral area, an S-N zonal pattern, which reflects the dynamical effect of peripheral topographic pattern on the diffusion of regional scale atmospheric pollution sources. Study suggests that the extent of winter atmospheric pollution within the "valley" megarelief in Beijing and periphery was close related with the pollution emission sources of the south peripheral area; and the significant "anti-phase" variation feature of winter AOD and sunshine duration in Beijing and its peripheral areas, and regional scale correlation of low cloud cover, fog days, and aerosols reflects the local climatic effect of aerosol influence in this region. Besides, analysis of the impacts of atmospheric dry/wet deposition distributions within a valley-scale on the regional water body of Miyun reservoir also reveals the possible influence of the multi-scale spatial structure of summer water, soil and atmospheric pollution sources on the water quality of Miyun reservoir.  相似文献   

2.
Based on the statistical analysis of emission inventory and ISCST3 model simulation, the emission and ambient concentration contributions of energy-use related sources to the major pollutants of SO2, NOx and PM10 in urban areas of Beijing were analyzed. The SO2 emission contributions of coal burning in power plants, industrial and heating sectors were 49%, 26% and 24% respectively. The vehicle exhaust contributed 74% of the NOx concentration. As to PM10, the industrial sector was the largest emission (28%) and concentration (21%) contributor despite of the fugitive sources. The source emission contributions of VOC and NH3, which greatly influence the generation of secondary pollutants, were discussed as well. This paper also analyzed the control strategies of energy consumption and vehicle sources, based on which the control scenario in 2008 was established and the change of emission and concentration contribution were estimated. The results show that the cleaner energy use, industrial structure improvement, transportation mode modification and single vehicle emission control will greatly improve air quality. The industrial sector will change to the largest contributor of SO2 and as to NOx, vehicle emission control is still important.  相似文献   

3.
Characteristics of observed trace gaseous pollutants in the Yangtze Delta   总被引:3,自引:1,他引:2  
The significant impacts on air quality and natural resources, such as land and forest, have taken place in Yangtze Delta in the last two decades, resulting from rapidly economic develop-ment in this region. The Yangtze Delta contains many cities and towns…  相似文献   

4.
Simulation of secondary aerosols over North China in summer   总被引:2,自引:0,他引:2  
The comparisons of observed and simulated NOx, CO, O3, NH3, HNO3, SO2 and PM2.5 indicate that CMAQ model can simulate variations of pollutants over North China well.Moreover, the model results show that high NH3 is in Hebei, Henan and Shandong provinces,with average concentration of (30-35)×10-9. The results of the sensitive experiment indicate that high concentration of NH3 has the efficiency of the production of secondary sulfate aerosol increase by more than 30%, especially at the juncture of Handan, Anyang and Changzhi that increased by 50%. In addition, NH3 also produces secondary ammonia and nitrate aerosol, and the sum of them is approximately equal to sulfate aerosol. The height of planetary boundary layer (PBL) in Beijing is higher in daytime, with average height of 1500 m at noon. This makes SO2,NH3 and HNO3 transported into upper PBL of 850 hPa. The high secondary sulfate, and ammonia and nitrate aerosol happen in the upper and lower PBL, respectively. Because PM2.5 lifetime is relatively long, it can be transported into the middle troposphere to form a thick aerosol layer,which is the arched roof of aerosol. The model result suggests that if the aerosol concentration in North China would be controlled, the reduction of NH3 emission is one of efficient ways besides the reduction of primary SO2, NOx and aerosol emission.  相似文献   

5.
Two year measurements of aerosol concentration and size distribution (0.25 μm < d < 30 μm) in the atmospheric surface layer, collected in L’Aquila (Italy) with an optical particle counter, are reported and analysed for the different modes of the particle size distribution. A different seasonal behaviour is shown for fine mode aerosols (largely produced by anthropogenic combustion), coarse mode and large-sized aerosols, whose abundance is regulated not only by anthropogenic local production, but also by remote natural sources (via large scale atmospheric transport) and by local sources of primary biogenic aerosols. The observed total abundance of large particles with diameter larger than 10 μm is compared with a statistical counting of primary biogenic particles, made with an independent technique. Results of these two observational approaches are analysed and compared to each other, with the help of a box model driven by observed meteorological parameters and validated with measurements of fine and coarse mode aerosols and of an atmospheric primary pollutant of anthropogenic origin (NOx). Except in winter months, primary biogenic particles in the L’Aquila measurement site are shown to dominate the atmospheric boundary layer population of large aerosol particles with diameter larger than 10 μm (about 80 % of the total during summer months), with a pronounced seasonal cycle, contrary to fine mode aerosols of anthropogenic origin. In order to explain these findings, the main mechanisms controlling the abundance and variability of particulate matter tracers in the atmospheric surface layer are analysed with the numerical box-model.  相似文献   

6.
In this study, particulate matters (TSP, PM10, PM2.5 and PM10–2.5) which are hazardous for environment and human health were investigated in Erzurum urban atmosphere at a sampling point from February 2005 to February 2006. During sampling, two low volume samplers were used and each sampling period lasted approximately 24 h. In order for detection of representative sampling region and point of Erzurum, Kriging method was applied to the black smoke concentration data for winter seasons. Mass concentrations of TSP, PM10 and PM2.5 of Erzurum urban atmosphere were measured on average, as 129, 31 and 13 μg/m3, respectively, in the sampling period. Meteorological factors, such as temperature, wind speed, wind direction and rainfall were typically found to be affecting PMs, especially PM2.5. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations, but had a considerably negative induction on PM2.5 mass concentrations. However, combustion sourced PM2.5 was usually diluted from the urban atmosphere by the speed of wind, soil sourced coarse mode particle concentrations (TSP, PM10) were slightly affected by the speed of wind. Rainfall was found to be decreasing concentrations to 48% in all fractions (TSP, PM10, PM10–2.5, PM2.5) and played an important role on dilution of the atmosphere. Fine mode fraction of PM (PM2.5) showed significant daily and seasonal variations on mass concentrations. On the other hand, coarse mode fractions (TSP, PM10 and PM10–2.5) revealed more steady variations. It was observed that fine mode fraction variations were affected by the heating in residences during winter seasons.  相似文献   

7.
This study presents daily and seasonal variations of PAH concentrations in Erzurum atmosphere in summer season of 2008 and in winter seasons of 2008 and 2009. Sampling location at Erzurum urban center was selected to represent the effects of traffic (University junction). 18 PAH compounds were analyzed by GC–MS. Average total PAH concentration (gas + particulate) of 18 PAH compounds were measured during 2008 winter (431 ngm?3) and summer (103 ngm?3) seasons at the University junction. Daily and seasonal variations of PAH compounds were investigated and compared with other urban centers in the literature. Multiple linear regression and artificial neural network (ANN) models were constructed to determine the impacts of meteorological parameters on measured individual PAH concentrations. Results of the multiple linear regression and ANN models indicated that wind speed, wind direction and intensity of total solar radiation were the most significant factors for the measured concentrations of PAH compounds.  相似文献   

8.
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in comparison with those at 8 m height. On pollution days, in company with the low wind speed, there existed two shallow inversion layers in the boundary layer, but aerosols might be, to some extent, mixed below the inversion layer, therefore, on the pollution day the concentrations of PM2.5 and PM10 dropped with height slowly; and the observational results also show that the concentrations at 320 m height were obviously high under SW and SE winds, but at other heights, the concentrations were not correlated with wind directions. The computational results of footprint analysis suggest that this was due to the fact that the 320 m height was impacted by the pollutants transfer of southerly flow from the southern peripheral heavier polluted areas, such as Baoding, and Shijiazhuang of Hebei Province, Tianjin, and Shandong Province, etc., while the low layer was only affected by Beijing's local pollution source. The computational results of power spectra and periods preliminarily reveal that under the condition of calm weather, the periods of PM10 concentration at various heights of the tower were on the order of minutes, while in cases of larger wind speed, the concentrations of PM2.5 and PM10 at 320 m height not only had the short periods of minute-order, but also the longer periods of hour order. Consistent with the conclusion previously drawn by Ding et al., that air pollutants at different heights and at different sites in Beijing had the character of "in-phase" variation, was also observed for the diurnal variation and mean diurnal variation of PM2.5 and PM10 at various heights of the tower in this experiment, again confirming the "in-phase" temporal/spatial distributive character of air pollutants in the urban canopy of Beijing. The gentle double-peak character of the mean diurnal variation of PM2.5 and PM10 was closely related with the evident/similar diurnal variation of turbulent momentum fluxes, sensible heat fluxes, and turbulent kinetic energy at various heights in the urban canopy. Besides, under the condition of calm weather, the concentration of PM2.5 and PM10 declined with height slowly, it was 90% of 8 m concentration at the low layer, a little lesser than 90% at the middle layer, and 80% at the high layer, respectively. Under the condition of weak cold air weather, the concentration remarkably dropped with height, it was 70% of 8 m concentration at the low layer, and 20%―30% at the middle and high layers, especially the concentration of PM2.5 was even lower.  相似文献   

9.
The impact of seasonal fluctuations in forcing factors such as atmospheric concentration, temperature, and biological productivity on the concentration of polychlorinated biphenyls (PCBs) in the surface water of the southern part of the Baltic Sea was investigated. Water samples were collected on eight cruises over 2 years. A clear seasonal variability in dissolved PCB concentrations was observed with higher levels in summer than in winter and spring. This was attributed to changes in atmospheric concentrations and water temperature, based on measurements showing the PCB levels in the atmosphere and surface water to be close to a partitioning equilibrium. Concentrations in the suspended particulate material (SPM) fraction were also variable, and when the quotient of the organic carbon normalised concentration in SPM and the dissolved concentration was calculated (i.e., the bioaccumulation factor (BAF)), a seasonal pattern was observed which was consistent with kinetic limitations on partitioning into particles caused by plankton growth. However, seasonal variability in the partitioning properties of the SPM may also contribute to this variability.  相似文献   

10.
A sampling and measuring device which enables the assessment of atmospheric particulate and gaseous mercury concentrations has been tested on Mount Etna Volcano. Particulate matter is collected on a Whatman GF/C of 1.0 µm pore-size, gaseous mercury species on a Au-column. The analysis is carried out in two steps: (1) the mercury species collected on the filter or the Au-column are transferred to a fixed analytical Au-column; (2) mercury liberated from this column during the second step is detected with a Mercury Vapour Monitor. Average concentrations of gaseous and particulate mercury in ambient sampling sites on Mount Etna are 3.8 ng m?3 and 0.49 ng m?3 respectively. Average concentrations of gaseous and particulate mercury in the plume of Bocca Nuova on Mount Etna are 15 ng m?3 and 24 ng m?3 respectively. An estimation of the total mercury discharge from Mount Etna amounts to 2.5 10?2 tons day?1.  相似文献   

11.
Based on the study of Beijing PM10 bioreactivity with the newly developed plasmid DNA assay method, and analysis for trace elements of PM10, the cause of plasmid DNA damage by PM10 was investigated. The study showed that plasmid DNA oxidative damages by PM10 are of difference in different seasons at various areas. The concentrations of TM50 of PM10 in whole samples respectively collected at urban and comparison sites during winter were 900 μg mL?1 and 74 μg mL?1, while those in their corresponding soluble fractions were 540 μg mL?1 and 86 μg mL?1. In contrast, TM50 contents of PM10 from summer whole samples at urban areas and comparison sites were 116 μg mL?1 and 210 μg mL?1, whereas those in their soluble fractions were 180 μg mL?1 and 306 μg mL?1. The difference of bioreactivity of Beijing PM10 resulted from the variation of trace elements. The oxidative damage of plasmid DNA caused by Pb, Zn, As in PM10 (whole sample) was relatively strong. TM50 and Mn, V, Zn display stronger correlation in the soluble fraction. It implies that Zn could be the major trace element in Beijing PM10 which contributes to oxidative damage to plasmid DNA.  相似文献   

12.
Changes in the spatial scale of Beijing UHI and urban development   总被引:2,自引:1,他引:2  
The seasonal and interannual variations of Beijing urban heat island (UHI) are investigated in this paper using the temperature data from 1960 to 2000 at 20 meteorological stations in the Beijing region, and then the relationship between the intensity and spatial scale of UHI and Beijing urbanization indices is analyzed and discussed. Main conclusions are the followings. First, Beijing UHI shows obvious seasonal variations, and it is strongest in winter, next in spring and autumn, and least in summer. The seasonal variation of the UHI mainly occurs in the urban area. The UHI intensity at the center of Beijing is more than 0.8℃ in winter, and only 0.5℃ in summer. Second, the intensity of Beijing HUI exhibits a clear interannual warming trend with its mean growth rate (MGR) being 0.3088℃/10 a. The MGR of HUI is largest in winter, next in spring and autumn, and least in summer, and the urban temperature increase makes a major contribution to the growth of HUI intensity. Third, since the Reform and Opening, the urbanization indices have grown several ten times or even one hundred times, the intensity of HUI has increased dramatically, and its spatial scale also expanded distinctively along with the expansion of urban architectural complexes. Fourth, the interannual variation of urbanization indices is very similar with that of HUI intensity, and their linear correlation coefficients are significant at a more than 0.001 confidence level.  相似文献   

13.
Exceedance of the US Environmental Protection Agency national ambient air quality standard for PM10 (particulate matter ≤10 µm in aerodynamic diameter) within the Columbia Plateau region of the Pacific Northwest US is largely caused by wind erosion of agricultural lands managed in a winter wheat–summer fallow rotation. Land management practices, therefore, are sought that will reduce erosion and PM10 emissions during the summer fallow phase of the rotation. Horizontal soil flux and PM10 concentrations above adjacent field plots (>2 ha), with plots subject to conventional or undercutter tillage during summer fallow, were measured using creep and saltation/suspension collectors and PM10 samplers installed at various heights above the soil surface. After wheat harvest in 2004 and 2005, the plots were either disked (conventional) or undercut with wide sweeps (undercutter) the following spring and then periodically rodweeded prior to sowing wheat in late summer. Soil erosion from the fallow plots was measured during six sampling periods over two years; erosion or PM10 loss was not observed during two periods due to the presence of a crust on the soil surface. For the remaining sampling periods, total surface soil loss from conventional and undercutter tillage ranged from 3 to 40 g m–2 and 1 to 27 g m–2 while PM10 loss from conventional and undercutter tillage ranged from 0·2 to 5·0 g m–2 and 0·1 to 3·3 g m–2, respectively. Undercutter tillage resulted in a 15% to 65% reduction in soil loss and 30% to 70% reduction in PM10 loss as compared with conventional tillage at our field sites. Therefore, based on our results at two sites over two years, undercutter tillage appears to be an effective management practice to reduce dust emissions from agricultural land subject to a winter wheat–summer fallow rotation within the Columbia Plateau. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
PAH were determined in surface waters from the Rhone delta in winter and summer 1987. Both particulate and dissolved phases were analyzed by GC and GC/MS. Concentrations of major unsubstituted compounds associated with particles varied from a few to 20 ng l−1, or from 0.42 to 6.0 μg g−1. The seasonal variations reflected higher inputs in winter resulting from the presence of highly PAH-enriched particles. Tetra- and penta-cyclic PAH with MW 202 and 252 predominated, which reflected a significant origin from pyrolytic processes. A rapid decrease of the level of higher MW PAH was observed seawards in both seasons. Study of the tricyclic compounds and their alkylated homologues demonstrated a mainly fossil origin in winter, whereas in summer a high heterogeneity of particles was observed. PAH in the dissolved phase were found at concentrations up to 31 and 50 ng l−1 in summer and winter, respectively. These levels were much higher than those encountered in the corresponding particulate phases. PAH with MW 178 and 202 predominated, and the alkylated homologues of the tricyclic compounds showed a major fossil orgin in winter and a mixed origin in summer. In winter dissolved PAH were transported through the delta into the marine environment without significant losses.  相似文献   

15.
Air quality has been deteriorated seriously in urban areas as a result of increasing anthropogenic activities. Meteorological conditions affect air pollution levels in the urban atmosphere significantly due to their important role in transport and dilution of the pollutants. This paper aims to investigate usability of some promising statistical methods for examining the impacts of metrological factors on SO2 and PM10 levels. Data were collected from city centre of Kocaeli in winter periods from 2007 to 2010 as pollutant concentrations increase in winters due to expanding combustion facilities. Results of bivariate correlation analysis showed that humidity and rainfall have remarkable negative correlations with the pollutants. Multiple linear regression models and artificial neural network (ANN) models were used to predict next day's PM10 and SO2 levels. In regression models calculated R2 values were 0.89 and 0.75 for PM10 and SO2, respectively. Among the various architectures, single layer networks provided better performance in ANN applications. Highest R2 values were obtained as 0.89 and 0.69 for PM10 and SO2, respectively, by using appropriate networks.  相似文献   

16.
Based on 5 years of OH imager data between September 2003 and September 2008 over Yucca Ridge Field Station, CO (40.7ºN, 104.9ºW), we presented the variation of gravity wave (GW) occurrence frequency and propagation direction in the upper mesosphere. In summer the GW occurrence frequency was extremely high at above 95% compared to other seasons (around 85%). The GW propagation direction showed a strong northward (poleward) preference in summer and a southward (equatorward) preference in winter. This could be possibly due to ducting of waves in the mesopause thermal structure and wave generation by the strong deep convection located at south side in summer and possible storms located at north side in winter. Westward traveling waves were rare, but eastward were frequent. In addition to seasonal variability, significant interannual variability was also observed.  相似文献   

17.
Understanding the changes in the air pollution of an area due to implementation of control strategies is important as it helps in making further action plans. Time series analysis provides ways to interpret the effect of any policy changes. In this study, the applicability of the CUSUM method for change detection in air pollutant concentrations in Delhi is investigated. The method detects any shift from mean of the process. Delhi has undergone major policy changes during the past few years. Change of fuel in vehicles to compressed natural gas (CNG) is one amongst them. The data observed at a traffic site in Delhi for nitrogen dioxide (NO2), carbon monoxide (CO) and particulate matter (with size less than 10 micron-PM10) concentrations is used to carry out the analysis. Increase in NO2 concentration and decrease in CO concentration levels is observed using CUSUM method. The choice of base period does not affect much for these two pollutants but for PM10 concentration, however its role is crucial. In order to counter any variability shifts, the CUSUM method is further modified to account for the change in the variance of the time series. Modified CUSUM method indicated similar nature of variability in NO2 and PM10, whereas CO variability has decreased significantly after CNG implementation.  相似文献   

18.
云南阳宗海大气氮、磷沉降特征   总被引:1,自引:0,他引:1  
大气氮、磷沉降是湖泊水体氮、磷入湖的重要途径之一.为了解阳宗海氮、磷沉降对湖泊富营养化的潜在影响,于2012年5月-2014年4月通过监测阳宗海大气氮、磷沉降,估算氮、磷的大气沉降通量,揭示阳宗海大气氮、磷沉降随时间变化的特征,分析其来源、影响因素等.由于阳宗海是磷限制湖泊,本研究在估算大气氮、磷沉降通量的基础上,特别比较了大气磷沉降入湖量与非点源磷的入湖量,以此评估大气沉降输入磷对湖泊富营养化的潜在影响.研究结果表明:阳宗海总氮年平均沉降通量为248 mg/m~2,春、夏、秋和冬季平均分别为200、306、274和214 mg/m~2,其中夏季沉降通量最大,原因与降雨量增加有关;总磷年平均沉降通量为24 mg/m~2,春、夏、秋和冬季平均分别为18、31、19和27 mg/m~2.大气磷沉降与输入阳宗海的总磷量相比很小,对阳宗海富营养化影响较小.  相似文献   

19.
Some aspects of the monsoon circulation and monsoon rainfall   总被引:1,自引:0,他引:1  
Summary The south Asian summer monsoon from June to September accounts for the greater part of the annual rainfall over most of India and southeast Asia. The evolution of the summer and winter monsoon circulations over India is examined on the basis of the surface and upper air data of stations across India. The salient features of the seasonal reversals of temperature and pressure gradients and winds and the seasonal and synoptic fluctuations of atmospheric humidity are discussed. The space-time variations of rainfall are considered with the help of climatic pentad rainfall charts and diagrams. The rainfall of several north and central Indian stations shows a minimum around mid-August and a maximum around mid-February which seem to be connected with the extreme summer and winter positions of the ITCZ and the associated north-south shifts in the seasonal circulation patterns. Attention is drawn to the characteristic features of the monsoon rainfall that emerge from a study of daily and hourly rainfall of selected stations. Diurnal variations of temperature, pressure, wind and rainfall over the monsoon belt are briefly treated.  相似文献   

20.
With a high-resolution SO2 emission inventory categorized by industries and seasons for Beijing city and gridded meteorological data fields from NCEP, the pollution dispersion model, HYSPLIT4 (Hybrid Single Particulate Lagrangian Integrated Trajectory, version 4), is used to determine the day-to-day variation of surface SO2 in Beijing for 2000 and 2001. Furthermore,the contributions of different emission sources in and around Beijing to the surface SO2 are studied. As shown in comparison with observations, the model does well in simulating the daily variation and seasonal distribution. The model computation of the annual source contributions to Beijing surface SO2 indicates that local emissions from the city give the largest contribution and the sources from the surrounding regions contribute only about 20%. During SO2 polluted or unpolluted days, the contribution from the latter can exceed 30%, and depending upon weather conditions, the contribution may exceed 40%. If the emissions from the surrounding sources during the winter heating season are assumed to be doubled in intensity, their contribution to surface SO2 in Beijing increased from 21% to 35% and 25% to 40% in 2000 and 2001, respectively. Evaluation of 7 types of emission sources identified for Beijing for their relative contribution to the concentration of surface SO2 has shown that area emissions by industrial production and furnaces, though discharging relatively small amounts (less than 1/3 of the total), have the largest contribution to the urban surface SO2, which is the key to the mitigation of the pollutant in the city.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号