首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
地质学   9篇
  2010年   1篇
  2006年   1篇
  2004年   1篇
  1998年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有9条查询结果,搜索用时 296 毫秒
1
1.
Mafic to intermediate enclaves are evenly distributed throughoutthe dacitic 1991–1995 lava sequence of Unzen volcano,Japan, representing hundreds of mafic recharge events over thelife of the volcano. This study documents the morphological,textural, chemical, and petrological characteristics of theenclaves and coexisting silicic host lavas. The eruptive productsdescribed in this study appear to be general products of magmamingling, as the same textural types are seen at many othervolcanoes. Two types of magmatic enclaves, referred to as Porphyriticand Equigranular, are easily distinguished texturally. Porphyriticenclaves display a wide range in composition from basalt toandesite, are glass-rich, spherical and porphyritic, and containlarge, resorbed, plagioclase phenocrysts in a matrix of acicularcrystals and glass. Equigranular enclaves are andesitic, non-porphyritic,and consist of tabular, medium-grained microphenocrysts in amatrix glass that is in equilibrium with the host dacite magma.Porphyritic enclaves are produced when intruding basaltic magmaengulfs melt and phenocrysts of resident silicic magma at theirmutual interface. Equigranular enclaves are a product of a moreprolonged mixing and gradual crystallization at a slower coolingrate within the interior of the mafic intrusion. KEY WORDS: mafic enclaves; quenched mafic inclusions; magma mingling; Unzen volcano; Unzen Scientific Drilling Project; resorbed plagioclase  相似文献   
2.
The Higo metamorphic unit in west-central Kyushu island, southwest Japan is an imbricated crustal section in which a sequence of units with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The basal part of the metamorphic sequence representing an original depth of 23–24  km consists mainly of garnet–cordierite–biotite gneiss, garnet–orthopyroxene gneiss, orthopyroxene-bearing amphibolite and orthopyroxene-bearing S-type tonalite. These metamorphic rocks underwent high amphibolite-facies up to granulite facies metamorphism with peak P – T  conditions of 720  MPa, 870  °C. In addition sapphirine-bearing granulites and related high-temperature metamorphic rocks also occur as tectonic blocks in a metamorphosed peridotite intrusion. The sapphirine-bearing granulites and their related high-temperature metamorphic rocks can be subdivided into five types of mineral assemblages reflecting their bulk chemical compositions as follows: (1) sapphirine–corundum–spinel–cordierite (2) corundum–spinel–cordierite (3) garnet–corundum–spinel–cordierite (4) garnet–spinel–gedrite–corundum, and (5) orthopyroxene–spinel–gedrite. These metamorphic rocks are characterized by unusually high Al2O3 and low SiO2 contents, which could represent a restitic nature remaining after partial melting of pelitic granulite under the ultra high-temperature contact metamorphism at the peak metamorphic event of the Higo metamorphic unit. The metamorphic conditions are estimated to be about 800  MPa and above 950  °C which took place at about 250  Ma as a result of the thermal effect of the regional gabbroic rock intrusions.  相似文献   
3.
Mirrol Trough of the northeast Atlantic contains five NNE-SSW trending, en echelon, turbidite-filled basins deeper than 5500 m, each ranging from 4 to 10 km in width and 19 to 65 km in length. Trough deposition has consisted mainly of turbidites from adjacent hills and ridges as indicated by the physiography of the region, sediment isopach map, the nature of the sediments in the trough, and benthic foraminiferal depth indicator species. The sedimentation rate on abyssal hills and ridges, as deduced from palaeomagnetic evidence, is 1.36 cm/103 years. Using this sedimentation rate, it is estimated that Mirrol Trough subsided relative to the surrounding area and began receiving sediments between 8.3 and 11.5 m.y. ago; and the deposition of the most recent turbidite has occurred sometime between 29,000 and 44,000 years b.p. Tilting of the base of the most recent turbidite with respect to the basin floor is observed, and this is attributed to relative sinking of the eastern margin of the trough after the deposition of the most recent turbidite.  相似文献   
4.
Abstract: Southwest Hokkaido is largely covered by Late Miocene to Quaternary igneous rocks, and has a large number of gold veins and base-metal veins of the same age. Investigation of the silica-normalized concentration of elements has revealed regional petrochemical zoning; large ion lithophile elements (LILE) and K2O/(Na2O+K2O) of the rocks increase toward Japan Sea, whereas total FeO, CaO, and 87Sr/86Sr decrease. Mapped concentration isoplethes of these elements are not ideally parallel to the volcanic front, but protrude to the west at Funka Bay, and to the northwest at Matsumae Peninsula. Isoplethes of 87Sr/86Sr show similar patterns and two more northwestward protrusions in the northeast (Jozankei block) of southwest Hokkaido. Contrary to the general petrochemical trend, both high– and low-LILE volcanic rocks occur in the Jozankei block. The ore deposits are distributed in four metallogenic zones; manganese–base–metal zone on the Japan Sea side, pyrite-limonite zone mainly along the volcanic front, gold zone in the middle, and two units of gold–base–metal zone. The northern unit of this zone is in the Jozankei block, and seems a part of the gold zone overlapped by the manganese–base–metal zone. Thus, as a rule, pyrite–limonite, gold, and base-metal deposits accompany low–, intermediate–, and high-LILE igneous rocks, respectively. Individual deposits and volcanic rocks make chains oblique to the zones and the volcanic front. The majority of the ore deposits are distributed along ridges of Bouguer anomalies overlapped by the volcanic chains, which apparently control the patterns of the petrochemical isoplethes. This is typical for two volcanic chains to the north and south of Funka Bay, where the petrochemical isoplethes protrude to the west. This indicates that both the igneous activity and the mineralization have been under the control of tectonic fractures at the roots of the volcanic chains. The geological, petrochemical and metallogenic data support the idea that the chemical characteristics of the deposits are correlated mainly with the chemistry of the associated magmas, and partly with that of the host rocks.  相似文献   
5.
The Horokanai ophiolite is a segment of metamorphosed oceaniccrust and upper mantle, tectonically replaced into the KamuikotanZone of Hokkaido, Japan. Metamorphic grade, ranging from thezeolite faciles (Zone A) through the greenschist facile (ZoneB) and the greenschist-amphibolite transitional facile (ZoneC), to the amphibolitic and granulizes facile (Zone D) increasesprogressively downwards with zone boundaries subparallel tothe ophiolite pseudostraitigraphy. The granulite facile rocksinclude both metagabbros and their underlying ultranafic rocks.Coexisting minerals from several tens of samples covering allthe minerals zones were analysed by means of an electronprodemicroanalyser; the results are presented, along with brief considerationof their compositional variation with metamorphic grade. Thefaciles series of metamorphism of the Horokanai ophiolite correspondsto the low-pressure type with a temperature range of 100-750?C, which is broadly comparable to that inferred for ocean-floormetamorphism. The major difference is the presence of the granulitefacile rocks in the Horokanai ophiolite and its absence in ocean-floormetamorphism.  相似文献   
6.
The occurrence of lawsonite is described from pelitic schists of the lower-grade part of the pumpellyite-bearing subzone of the chlorite zone in the Asemi River area of central Shikoku. The lawsonite-bearing parageneses are consistent with the generally accepted view that the Sanbagawa facies series represents higher pressures than the lawsonite-bearing facies series in New Zealand.  相似文献   
7.
A series of wave‐flume experiments was conducted to closely look at characteristics of geometry and migration of wave‐generated ripples, with particular reference to the effect of velocity ‘hiatuses’ during which the near‐bed flow velocity becomes much smaller than the threshold of sediment movement. Three types of wave patterns were generated: two types for simulating waves with intervening velocity hiatuses; and regular waves for comparison purposes. In the former two types, two different wavelengths of water waves were generated alternately in the course of a wave test: the wave with a longer wavelength was set large enough to mobilize the bottom sediment, whereas the wave with a shorter wavelength was set too small to mobilize the sediment. The former two types were designed to be different in sequence of convexity and concavity of wave patterns. The sequence with the convex–concave longer wave and successive convex–concave shorter wave was described as a ‘zero‐up‐crossing’ wave pattern, and the inverse sequence was described as a ‘zero‐down‐crossing’ wave pattern. The ripples developed under oscillatory flow with intervening hiatuses manifested the following characteristics in geometry and migration. (i) The morphological characteristics of ripples, namely wavelength, height and the ripple steepness, are unaffected by the intervening hiatuses of velocity. (ii) The directions of ripple migration under the zero‐up‐crossing and zero‐down‐crossing wave patterns corresponded well with the directions of the flow immediately before onset of the hiatuses. (iii) The observation of sand particle movement on the ripple surface indicated that, under the zero‐up‐crossing waves, the velocity hiatus prevents the entrained sediment cloud from being thrown onshore, and thus the sediment grains thrown onshore are fewer than those thrown offshore. As a result of the sediment movement over one wave‐cycle, the net sediment transport is directed offshore under the zero‐up‐crossing wave pattern. (iv) The velocity of ripple migration was highly correlated with acceleration skewness. Under most of the zero‐up‐crossing (zero‐down‐crossing) wave patterns, flow acceleration skewed negative (positive) and ripples migrated offshore (onshore).  相似文献   
8.
光头山碱性花岗岩产出在华北北部的前寒武纪基底变质岩系之中,造岩矿物组合为石英 碱性长石 纳铁闪石 霓辉石 钠铁非石±星叶石,副矿物有锆石、钛铁矿、硅钛铈铁矿等。晚期的伟晶岩囊状体由颗粒粗大的石英、碱性长石和纳铁闪石等组成,全岩Rb-Sr等时线年龄为T=200±16Ma,(~(87)Sr/~(86)Sr)_i=0.705±0.008,MSWD=11.2,代表冷却年龄,单颗粒锆石U-Pb谐和年龄为220±1Ma,代表岩体侵位时代。光头山碱性花岗岩以A/CNK<1和A/NK<1,Al_2O_3、MgO、CaO和Ba、Sr含量低,全碱含量、MnO和Rb、Ga等含量高,负Eu异常特别显著等为特征。矿物学和地球化学完全符合A型花岗岩的特征。光头山碱性花岗岩是华北地区早中生代后造山环境下岩浆活动的产物。光头山碱性花岗岩的ε_(Nd)(T=220Ma)平均值为-8.9,明显高于华北前寒武纪下地壳岩石的范围,而冀北地区前寒武纪高压麻粒岩地体虽具有大陆地幔的特征,但未经历过部分重熔,表明至少前寒武纪下地壳不可能是岩浆主要的或唯一的来源同样,现今华北下地壳由于时代较新,也不可能成为岩浆的源岩,对比时代相近的超镁铁岩和煌斑岩的Nd同位素特征,推测最可能的源区是1.8~1.9Ga形成的富集的岩石圈地幔。光头山碱性花岗岩和华北北缘早中生代侵入岩带规模很大,以富集地慢来源的岩浆为主,反映了当时的岩浆活动已经具有相当的规模和强度,如果130Ma前后中国东部大规模岩浆活动之时,是岩石圈减薄已经达到最大程度之际,那么,此前一定时间段内的幔源岩浆活动都有可能与岩石圈减薄从开始到鼎盛的过程有关,所以,华北北缘早中生代岩浆活动可能是华北中生代岩石圈减薄过程早期阶段的产物。与岩石圈减薄过程有关的早中生代岩浆活动还在中国东北地区东部和阿拉善北部形成了后造山A型花岗岩。与岩石圈减薄过程相关的早中生代侵入岩在一定范围内的带状分布,表明当时岩石圈减薄过程可能并没有涉及到整个中国东部地区只有到了侏罗纪-白垩纪,岩石圈减薄过程才在更大的区域内广泛发生。所以说,中国东部中新生代岩石圈减薄过程是在时间上从早中生代就已经开始、在空间上从华北北缘-中国东北地区东部开始向外逐渐扩展的一个深部过程。这个深部过程对应的地表表现是,先在华北北缘和中国东北东部地区形成规模很大的早中生代侵入岩带。而后,当岩石圈减薄过程扩展到整个中国东部时,岩浆活动才达到鼎盛时期,这可能就是中国东部侏罗纪-白垩纪大规模岩浆活动的深部原因所在。而以富集地幔源区为主的岩浆活动还导致了华北北缘地壳垂向生长。  相似文献   
9.
Abstract. In the Kamuikotan zone, central Hokkaido, Japan, two distinct types of metamorphic rocks are tectonically mixed up, along with a great quantity of ultramafic rocks; one type consists of high-pressure metamorphic rocks, and the other of low-pressure ones. The high-pressure metamorphic rocks are divided into two categories. (1) Prograde greenschist to glaucophaneschist facies rocks derived from mudstone, sandstone, limestone, a variety of basic rocks such as pillow and massive lavas, hyaloclastite and tuff, and radiolarian (Valanginian to Hauterivian) chert, among which the basic rocks and the chert, and occasionally the sandstone, occur as incoherent blocks (or inclusions) enveloped by mudstone. (2) Retrograde amphibolites with minor metachert and glaucophane-calcite rock, which are tectonic (or exotic) blocks enclosed within prograde mudstone or serpentinite, or separated from these prograde rocks by faults. The K-Ar ages of the prograde metamorphic rocks (72, 107 and 116 Ma on phengitic muscovites) are younger than those of the retrograde rocks (109, 132, 135 and 145 Ma on muscovites, and 120 Ma on hornblende). The low-pressure metamorphic rocks consist of the mafic members of an ophiolite sequence with a capping of radiolarian (Tithonian) chert with the metamorphic grade ranging from the zeolite facies, through the greenschist (partly, actinolite-calcic plagioclase) facies to the amphibolite (partly, hornblende-granulite) facies. The low-pressure metamorphism has a number of similarities with that described for'ocean-floor'metamorphism. The tectonic evolution of such a mixed-up zone is discussed in relation to Mesozoic plate motion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号