首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   5篇
测绘学   4篇
地球物理   23篇
地质学   16篇
海洋学   1篇
自然地理   7篇
  2021年   1篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
The chemical content of the Souss unconfined groundwater displays spatial variations in conductivity (between 400 and 6,000 µS cm-1). The chemical tracers (Cl-, SO42-, Sr2+, Br-), which characterize the different components of the groundwater, allowed the determination of the origin of water salinity. Cl- and SO42-, reaching respectively 2,000 and 1,650 mg L-1, display localized salinity anomalies. Br-/Cl- ratio distinguishes marine-influenced impoverished zones versus the oceanic domain. Thus, salinity anomalies can be attributed: (1) downstream, to a currently existing salt-encroachment (with added waste water) and sedimentary palaeosalinity, (2) in the middle-Souss, to High Atlas evaporites and to irrigation water recycling. Sr2+/Ca2+ ratio (evaporites if >1‰), confirms the evaporitic origin of the anomalies along the right bank of oued Souss. Furthermore, it facilitates the distinction between the different aquifer contributions (Cretaceous, Jurassic and Triassic), and it highlights leakage from deep Turonian limestones in the groundwater recharge system. To the south, recharge is from the Anti Atlas (evaporite-free) waters. Oxygen-18 measurements confirm the groundwater recharge from the High and Anti Atlas as piezometric maps and chemical tracers suggested, plus from leakage from the Turonian and the marine aquifers.  相似文献   
2.
The El Jadida landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 150 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the ground. At the site of this landfill, the groundwaters circulate deeply (10–15 m) in the Cenomanian rock (calcareous–marl), which is characterised by an important permeability from cracks. The soil is sand–clay characterized by a weak coefficient of retention.The phreatic water ascends to the bottom of three quarries, which are located within the landfill. These circumstances, along with the lack of a leachate collection system, worsen the risks for a potential deterioration of the aquifer.To evaluate groundwater pollution due to this urban landfill, piezometric level and geochemical analyses have been monitored since 1999 on 60 wells. The landfill leachate has been collected from the three quarries that are located within the landfill. The average results of geochemical analyses show an important polluant charge vehiculed by landfill leachate (chloride = 5680 mg l−1, chemical oxygen demand = 1000 mg l−1, iron = 23 000 μg l−1). They show also an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 4.5 mS cm−1 in electric conductivity, 1620 and 1000 mg l−1 respectively in chlorides and sulfate (), 15–25 μg l−1 in cadmium, and 60–100 μg l−1 in chromium. These concentrations widely exceed the standard values for potable water.Several determining factors in the evolution of groundwater contamination have been highlighted, such as (1) depth of the water table, (2) permeability of soil and unsaturated zone, (3) effective infiltration, (4) humidity and (5) absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a system of collection, drainage and treatment of landfill leachates and to emplace an impermeable surface at the site of landfill, in order to limit the infiltration of leachate.  相似文献   
3.
Hydrological connectivity is a term often used to describe the internal linkages between runoff and sediment generation in upper parts of catchments and the receiving waters. In this paper, we identify two types of connectivity: direct connectivity via new channels or gullies, and diffuse connectivity as surface runoff reaches the stream network via overland flow pathways. Using a forest road network as an example of a landscape element with a high runoff source strength, we demonstrate the spatial distribution of these two types of linkages in a 57 km2 catchment in southeastern Australia. Field surveys and empirical modelling indicate that direct connectivity occurs primarily due to gully development at road culverts, where the average sediment transport distance is 89 m below the road outlet. The majority of road outlets were characterised by dispersive flow pathways where the maximum potential sediment transport distance is measured as the available hillslope length below the road outlet. This length has a mean value of 120 m for this catchment. Reductions in sediment concentration in runoff plumes from both pathways are modelled using an exponential decay function and data derived from large rainfall simulator experiments in the catchment. The concept of the volume to breakthrough is used to model the potential delivery of runoff from dispersive pathways. Of the surveyed road drains (n=218), only 11 are predicted to deliver runoff to a stream and the greatest contributor of runoff occurs at a stream crossing where a road segment discharges directly into the stream. The methodology described here can be used to assess the spatial distribution and likely impact of dispersive and gullied pathways on in-stream water quality.  相似文献   
4.
This paper puts forward a 3D reconstruction methodology applied to the restoration of historic buildings taking advantage of the speed, range and accuracy of a total geodetic station. The measurements representing geo-referenced points produced an interactive and photorealistic geometric mesh of a monument named ‘Neoria.’ ‘Neoria’ is a Venetian building located by the old harbor at Chania, Crete, Greece. The integration of tacheometry acquisition and computer graphics puts forward a novel integrated software framework for the accurate 3D reconstruction of a historical building. The main technical challenge of this work was the production of a precise 3D mesh based on a sufficient number of tacheometry measurements acquired fast and at low cost, employing a combination of surface reconstruction and processing methods. A fully interactive application based on game engine technologies was developed. The user can visualize and walk through the monument and the area around it as well as photorealistically view it at different times of day and night. Advanced interactive functionalities are offered to the user in relation to identifying restoration areas and visualizing the outcome of such works. The user could visualize the coordinates of the points measured, calculate distances and navigate through the complete 3D mesh of the monument. The geographical data are stored in a database connected with the application. Features referencing and associating the database with the monument are developed. The goal was to utilize a small number of acquired data points and present a fully interactive visualization of a geo-referenced 3D model.  相似文献   
5.
 The Errachidia basin is composed of three superposed aquifers (Senonian, Turonian limestones and Infracenomanian). The Liassic limestone of the upper Atlas borders the northern part of the basin. The piezometric map of the Turonian aquifer displays a north-south flow, with an inflow area from the Atlas. This recharge hypothesis is demontrated by a discriminant analysis performed on chemical data: the majority of the spots are of sodium choride and hydrogenocarbonate types, while several boreholes are assigned to a calcium hydrogenocarbonate type Jurassic component. 18O measurements, using the Atlasic gradient δ18O=–4.18–0.0027 x elevation to estimate the recharge areas, confirm that the recharge area is the basin itself (<1100 m) on the Turonian outcrops, while in the confined part, the Turonian is recharged higher than 1400 m (corresponding to the Atlas). This contribution ranges from 56 to 85%, according to the situation versus the piezometric inflow area. The remainder represents infiltration and vertical leakage from the Senonian layers.  相似文献   
6.
In north-eastern Algeria, the Seybouse River is an important source of water used mainly for irrigation of large agricultural areas extending from the Guelma region to Annaba city. Industrial activities in this region contribute substantial water pollution to the river and the groundwater. Based on the different sources of pollution, mapping of areas vulnerable to groundwater pollution has been accomplished by combining land use and data on groundwater levels. The resulting maps show that the most vulnerable areas are those with large industrial activities—in Meboudja, Bouchegouf and Guelma. Infiltration and runoff contribute to pollution, and the highest infiltration rate is generally observed in areas of agricultural and industrial activities. Pollution of the aquifers in this area is of concern. Mountains, such as the Edough and Gelaat Bou Sbaa, contribute high runoff that carries pollutants towards the groundwater.  相似文献   
7.
The groundwater flow in a fissured chalky environment at the northern border of the Paris Basin depends on several geological and hydrogeological parameters. Although the studied sector of the basin presents a homogeneous rock type, it is affected by a fracture network. In this type of environment, in which the permeability is low, the groundwater flow displays significant disruption, which is localized in the Fruges region (northern France). The interconnection of the discontinuities (network of fault and/or joints) is reliant on the structural control of groundwater flow through increases in the hydraulic connection between the unsaturated and the saturated zone. The methodology developed herein makes use of microstructural and regional analysis of the fracture patterns, and allowed consideration of the piezometric variations of the chalk aquifer during periods of low and high groundwater levels (April and October 2001) and a diagraphic representation of the estimated physical parameters (electrical resistivity). This enabled us to construct a ‘flow structure’ conceptual model in which we identify two types of faults: tight walls and flow paths that control the piezometric heads and the flow rate. Model validation was carried out on a similar sector. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
8.
Estimation of mineral resources and reserves with low values of error is essential in mineral exploration. The aim of this study is to compare inverse distance weighted (IDW) and ordinary kriging (OK) methods based on error estimation in the Dardevey iron ore deposit, NE Iran. Anisotropic ellipsoid and variograms were calculated and generated for estimation of Fe distribution by both methods. Density, continuity of ore and waste, the number of points involved, and the discretization factor in the estimation of ore and waste boundaries were determined and the resource estimated by IDW and OK methods. Estimation errors were classified based on JORC standard, and both methods were compared due to distribution of error estimation. Results obtained by the study indicate that error estimation of OK method is less than IDW method and that the results of OK method are reliable.  相似文献   
9.
S. Lallahem  J. Mania 《水文研究》2006,20(7):1585-1595
Chalk crops out from a wide belt around the Paris basin, France, covering an area of about 70 000 km2. In this region, the chalk presents the most important unconfined aquifer because of its extent and the size of its resources ((11–12) × 109 m3 year?1). The assessment of underground outflow depends on the vertical feeding, the infiltration and the hydrometry. This paper analyses the regional structural map, interprets the groundwater reaction under rainfall, explains the water circulation in such media where the reservoir geometry plays an essential role on aquifer response, and determines different aquifer physical parameters. Attempts are made to identify the rapid transfer of groundwater at the level of faults and their important fissures. Based on a quantitative study of the seasonal and interannual piezometry fluctuations, it is noted that the mode and the piezometric chronology events are controlled by major parameters of geological and hydrogeologic contexts, aquifer hydraulic characteristics, the position of upstream and downstream basin limits, groundwater depth and replenishment time. This paper ends with determination of groundwater physical parameters of the diffusivity (T/S, T and S) values by examination of the groundwater replenishments periods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
10.
S. Lallahem  J. Mania 《水文研究》2003,17(8):1561-1577
The purpose of this research is to include expert knowledge as one part of the modelling system and therefore offer the chance to create a productive interaction system between expert, mathematical model (MMO8) and artificial neural networks (ANNs). In the present project, the first objective is to determine some parameters by the MMO8 model, introduced as ANN input parameters to forecast spring outflow. The second objective is first to investigate the effect of temporal information by taking current and past data sets and then to forecast spring outflow. The good results obtained reveal the merit of the ANNs–MMO8 combination, and specifically multilayer perceptron (MLP) models. This methodology, for a network with lower, lag and number hidden layer, consistently produced better performance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号