首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37511篇
  免费   673篇
  国内免费   1069篇
测绘学   1693篇
大气科学   2949篇
地球物理   7605篇
地质学   16074篇
海洋学   2284篇
天文学   3703篇
综合类   2189篇
自然地理   2756篇
  2021年   129篇
  2020年   172篇
  2019年   181篇
  2018年   4945篇
  2017年   4217篇
  2016年   2871篇
  2015年   521篇
  2014年   396篇
  2013年   779篇
  2012年   1381篇
  2011年   3203篇
  2010年   2466篇
  2009年   2809篇
  2008年   2372篇
  2007年   2754篇
  2006年   576篇
  2005年   599篇
  2004年   861篇
  2003年   814篇
  2002年   654篇
  2001年   329篇
  2000年   320篇
  1999年   251篇
  1998年   249篇
  1997年   185篇
  1996年   198篇
  1995年   202篇
  1994年   207篇
  1993年   186篇
  1992年   194篇
  1991年   172篇
  1990年   195篇
  1989年   166篇
  1988年   159篇
  1987年   212篇
  1986年   171篇
  1985年   253篇
  1984年   307篇
  1983年   242篇
  1982年   220篇
  1981年   248篇
  1980年   204篇
  1979年   213篇
  1978年   184篇
  1977年   183篇
  1976年   170篇
  1975年   156篇
  1974年   120篇
  1973年   140篇
  1972年   81篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
Jurassic igneous bodies of the Sanandaj–Sirjan zone (SaSZ) in SW Iran are generally considered as a magmatic arc but critical evaluation of modern geochronology, geochemistry and radiogenic isotopes challenges this conclusion. There is no evidence for sustained igneous activity along the ~1,200 km long SaSZ, as expected for a convergent plate margin; instead activity was brief at most sites and propagated NW at ~20 mm/a. Jurassic igneous rocks define a bimodal suite of gabbro‐diorite and granite. Chemical and isotopic compositions of mafic rocks indicate subcontinental lithospheric mantle sources that mostly lacked subduction‐related modifications. The arc‐like features of S‐type granites reflect massive involvement of Cadomian crust and younger sediments to generate felsic melts in response to mafic intrusions. We conclude that Jurassic SaSZ igneous activity occurred in a continental rift, not an arc. SaSZ igneous rocks do not indicate that subduction along the SW margin of Eurasia began in Jurassic time.  相似文献   
3.
Sapphirine–quartz granulites from the Cocachacra region of the Arequipa Massif in southern Peru record early Neoproterozoic ultrahigh‐temperature metamorphism. Phase equilibrium modelling and zircon petrochronology are used to quantify timing and pressure–temperature (P–T) conditions of metamorphism. Modelling of three magnetite‐bearing sapphirine–quartz samples indicates peak temperatures of >950°C at ~0.7 GPa and a clockwise P–T evolution. Elevated concentrations of Al in orthopyroxene are also consistent with ultrahigh‐temperature conditions. Neoblastic zircon records ages of c. 1.0–0.9 Ga that are interpreted to record protracted ultrahigh‐temperature metamorphism. Th/U ratios of zircon of up to 100 reflect U‐depleted whole‐rock compositions. Concentrations of heavy rare earth elements in zircon do not show systematic trends with U–Pb age but do correlate with variable whole‐rock compositions. Very large positive Ce anomalies in zircon from two samples probably relate to strongly oxidizing conditions during neoblastic zircon crystallization. Low concentrations of Ti‐in‐zircon (<10 ppm) are interpreted to result from reduced titania activities due to the strongly oxidized nature of the granulites and the sequestration of titanium‐rich minerals away from the reaction volume. Whole‐rock compositions and oxidation state have a strong influence on the trace element composition of metamorphic zircon, which has implications for interpreting the geological significance of ages retrieved from zircon in oxidized metamorphic rocks.  相似文献   
4.
5.
The effects of natural fish oil,DHA oil and soybean lecithin in microparticulate diets on stress tolerance of larval gilthead seabream(Sparus aurata)were investigated after 15 days feeding trials.The tolerance of larval gilthead seabream to various stress factors such as exposure to air(lack of dissolved oxygen),changes in water temperature(low)and salinity(high) were determined.This study showed that microparticulate diet with natural fish oil and soybean lecithin was the most effective for in-creasing the tolerance of larval gilthead seabream to various stresses,and that microparticulate diet with natural fish oil and palmitic acid(16:0)was more effective than microparticulate diet with DHA oil and soybean lecithin.  相似文献   
6.
7.
Nowadays, the research works on landscape at fine scales using high-resolution images are uncommon.This research is based on the analysis of the combination of remote sensing data (1KONOS imagery acquired in 2002 and historical aerial photo taken in 1942). In the paper, the ecotopes in Qiujiadou and Xishao villages in Yixing City of Jiangsu Province in 1942 and 2002 were compared and landscape changes as well as the causes of the considerable changes were analyzed. It was found that the ecotope changes were at greater level in some aspects such as water surface and perennial vegetation coverage etc. This study at fine scale is globally significant for the rural areas, especially for the subsistence agricultural land, which occupies larger percentage in the earth. And it analyzes the structure of landscape based on a new landscape classification system--stratifications method.  相似文献   
8.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   
9.
We examine a siphon-like mechanism for moving mass from the chromosphere to a gravitational well at the top of a magnetic loop to form a prominence. The calculations assume no apriori flow velocity at the loop base. Instead heating in the loop legs drives the flow. The prominence formation process requires two steps. First, the background heating rate must be reduced to on the order of 1 % of the initial heating rate required to maintain the coronal loop. This forms an initial condensation at the top of the loop. Second, the heating must take place only in the loop legs in order to produce a pressure differential which drives mass up into the well at the top of the loop. The heating rate in the loop must be increased once the prominence has begun to form or full prominence densities can not be achieved in a reasonable time. We conclude that this heating driven siphon-like mechanism is feasible for producing and maintaining prominences.  相似文献   
10.
The stability and evolution of cold, shock-bounded slabs is studied using numerical hydrodynamic simulations. We confirm the analysis of Vishniac (1994) [ApJ, 428, 186], who showed that such slabs are unstable if they are perturbed by a displacement larger than their width. The growth rate of this nonlinear thin shell instability (NTSI) is found to increase with decreasing wavelength, in qualitative agreement with Vishniac's analysis. The NTSI saturates when the bending angle becomes large and the growth in the width of the slab pinches off the perturbation. After saturation, the slab remains greatly extended with an average density much less than the original slab density, supported primarily by supersonic turbulence within the slab. Linear perturbations are also found to be unstable in that they can lead to turbulent flow within the slab, although this response to linear perturbations is distinct from, and much less violent than the NTSI.Richard McCray  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号