首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
地球物理   1篇
地质学   5篇
  2022年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
An interdisciplinary study (major and minor elements, C and O isotopes, heavy and light minerals, phyllosilicates, wireline logs) in northern Namibia unraveled the hydrographic and hydraulic evolution of alluvial–fluvial sediments of the Kunene and Cubango megafans (Etosha-Cuvelai Basin). Three principal aquatic regimes were operative within the megafan complex: (1) the hydrographic regime, (2) the proximal hydraulic regime, (3) the distal hydraulic regime. The allogenic mineral assemblages mirror the hydrographic variation or drainage system and the lithological evolution of the fan sediments (alluvial–fluvial fan, lacustrine environment with evaporites, fan delta progradation). Authigenic heavy minerals are markers of the physical–chemical condition (Eh and pH values) of the hydraulic regime within the proximal fan at the basin margin. Authigenic heavy, light and clay minerals equally contribute to the determination of the fluid chemistry and temperature, as well as the source of chemical constituents of the former pore fluids percolating through the distal fan. Carbonatization was the most pronounced event in the distal hydraulic system and controlled by the presence of biogenic as well as atmospheric carbon. The isotope-based determination of the temperatures, albeit strongly fluctuating, do not exceed 40 °C. The overall pH values determined for the hydraulic regime within the distal fan range from slightly acidic to alkaline. The presence of zeolites attests to some short-lasting but strong deviations from the pH range, mainly towards more alkaline conditions. Heavy, light and clay mineral analyses proved to be a useful tool to determine the (paleo)hydrology of alluvial–fluvial fan systems in tropical arid to semiarid climates.  相似文献   
2.
An exploration strategy for groundwater was established and followed in the northern Namibian Cuvelai-Etosha Basin (CEB). The data derived from transient electromagnetics, rotary-drilling, coring and sample investigation were used to refine stratigraphy and hydrostratigraphy, and to develop a 3D map of aquifers within the Cubango Megafan. The results have delineated three major aquifers. The newly found, deep-seated Ohangwena II Aquifer (KOH-2) has the potential of providing significant additional water to the water supply of northern Namibia and Angola. While near-surface aquifers carry predominantly brackish water, freshwater in the deep-seated aquifer is further extended and features good hydraulic properties. To date, only a small part of the hydrogeological potential of arid CEB has been explored and an extension of exploration is needed, including southern Angola. The combination of structural, sedimentological and hydrogeological approaches greatly advanced both the geological and hydrogeological understanding. With regard to the deep-seated aquifer, strict measures need to be applied to ensure that the water in the KOH-2 reservoir is exploited sustainably. Water control areas need to be established to ensure long-term preservation of this newly explored aquifer.  相似文献   
3.
For the safe disposal of high-level radioactive waste, different host rocks are currently being considered. The favorable properties of clay are low permeability, some retention capacity concerning radionuclides, and the ability to self-seal cracks and fissures, e.g. by swelling or time-dependent compaction creep. In Switzerland, the Jurassic Opalinus Clay is envisaged as a potential host rock which—at Mont Terri—is subdivided into the sandy, shaly, and carbonate-rich facies, the latter being less abundant. For long-term safety assessments, the understanding of the relations of properties (e.g. mineralogical composition and microstructure) and performance (e.g. mechanical behavior) of clays and claystones is essential. In the case of the sandy Opalinus Clay, the mechanical strength increases with increasing carbonate content, because carbonates form the matrix. The mineralogical investigation of a set of sandy facies samples proved a significantly larger carbonate content (20–40 mass %) when compared to the shaly facies (10–20 mass %). The carbonates of the shaly Opalinus Clay, on the other hand, are mostly localized fossils aligned parallel to the bedding, acting as predetermined breaking points. Image analysis of SEM images of polished sections proved the determined microstructural differences. In addition, carbonate particles of the sandy facies are mostly isometric, whereas carbonate particles of the shaly facies cover a greater range of shapes. The mechanical tests were accompanied by investigations of the p- and s-wave velocities, which revealed that the anisotropy of the sandy facies is less pronounced than sedimentological analyses would suggest. The mechanical strength, which, for the first time, presents results of real triaxial tests of the sandy facies. The samples of the sandy facies exhibit a failure strength of σ eff,B, approximately twice as high as was found for the shaly facies considering the deformation axis parallel to the bedding. Similar values were obtained when measuring perpendicularly to the bedding.  相似文献   
4.
Building stones manufactured from contact metamorphic slates (Fruchtschiefer slate) from Theuma (Sachsen, Germany) were investigated for mineralogical alterations as well as for changes in porosity and surface roughness due to weathering. After weathering periods of several years to decades, the originally dark gray-colored slates show pale spots of several centimeters in size at the surface of building stones. The dark-colored and light-colored sections of the slate show no differences in mineralogy. Surface weathering did not result in newly precipitated minerals. It was also found that the observed differences in color are not caused by variations in sedimentary organic carbon concentration or in sulfide/sulfate concentrations. Obtained results instead indicate that dark surface sections may show a thin cover of recent organic matter (OM), e.g., living OM, soot, dirt, etc. Microscopic investigations suggested that this cover was exfoliated at light-colored surface sections. The observed disaggregation of the upper 2 mm of the building block material results in an increase in porosity. Porosity of black (unweathered) slate is <2 vol.%. Due to weathering, the slate’s pores with diameters >1 μm show a significant increase in frequency compared to the original pore size distribution. Porosity of weathered rock volumes increased to approx. 8 vol.%. Discolored surface sections show a higher surface roughness (root-mean-square roughness, Rq ~ 1 μm) compared to dark-colored slate surfaces (Rq ~ 200 nm), both data are for cleavage planes. Preferentially, the discolored surface sections are located close to the edges of cut stones. This and the alteration in porosity, pore size, and surface roughness indicate that color changes of the slate are largely influenced by rock disaggregation proceeding from the edges into the center rather than by mineral dissolution/precipitation processes.  相似文献   
5.
Acta Geochimica - Goethite (α-FeOOH) is one of the most abundant minerals on the Earth surface, occurring in temperate, tropical and equatorial climates. Fe in goethite can be substituted by...  相似文献   
6.
The presence of a wellbore skin layer, formed during the drilling process, is a major impediment for the energy‐efficient use of water wells. Many models exist that predict its potential impacts on well hydraulics, but so far its relevant hydraulic parameters were only estimates or, at best, model results. Here, we present data on the typology, thickness, composition, and hydraulic properties obtained from the sampling of excavated dewatering wells in lignite surface mines and from inclined core drilling into the annulus of an abandoned water well. Despite the limited number of samples, several types of skin were identified. Both surface cake filtration and particle straining in the aquifer occur. The presence of microcracks may be a determining feature for the hydraulic conductivity of skin layers. In the case of the well‐developed water supply well, no skin layer was detected. The observed types and properties of wellbore skin samples can be used to test the many mathematical skin models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号