首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  国内免费   2篇
大气科学   18篇
地球物理   3篇
地质学   15篇
海洋学   21篇
天文学   6篇
综合类   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1988年   1篇
排序方式: 共有64条查询结果,搜索用时 734 毫秒
1.
In order to understand the process of surface erosion and acquire basic data of conditions on hillslope without vege tation, a sprinkling experiment is conducted on a bare slope in Mt. Tanakami in the central part of Japan. Based on the mea surements of runoff, mean soil erosion depth, and sediment yield, etc. , the results suggest the following characteristics in the process of surface erosion in the experimental area. (1) The occurrence of sediment discharge is interrupted; (2) Surface runoff is a saturated overland flow; (3) The mean soil erosion depth is thick compared with other areas in Mt. Tanakami;(4) Sediment discharge process is detachment- limited.  相似文献   
2.
3.
4.
The effective stress concept for solid‐fluid 2‐phase media was revisited in this work. In particular, the effects of the compressibility of both the pore fluid and the soil particles were studied under 3 different conditions, i.e., undrained, drained, and unjacketed conditions based on a Biot‐type theory for 2‐phase porous media. It was confirmed that Terzaghi effective stress holds at the moment when soil grains are assumed to be incompressible and when the compressibility of the pore fluid is small enough compared to that of the soil skeleton. Then, isotropic compression tests for dry sand under undrained conditions were conducted within the triaxial apparatus in which the changes in the pore air pressure could be measured. The ratio of the increment in the cell pressure to the increment in the pore air pressure, m, corresponds to the inverse of the B value by Bishop and was obtained during the step loading of the cell pressure. In addition, the m values were evaluated by comparing them with theoretically obtained values based on the solid‐fluid 2‐phase mixture theory. The experimental m values were close to the theoretical values, as they were in the range of approximately 40 to 185, depending on the cell pressure. Finally, it was found that the soil material with a highly compressible pore fluid, such as air, must be analyzed with the multi‐phase porous mixture theory. However, Terzaghi effective stress is practically applicable when the compressibilities of both the soil particles and the pore fluid are small enough compared to that of the soil skeleton.  相似文献   
5.
A computational framework is presented for dynamic strain localization and deformation analyses of water‐saturated clay by using a cyclic elasto‐viscoplastic constitutive model. In the model, the nonlinear kinematic hardening rule and softening due to the structural degradation of soil particles are considered. In order to appropriately simulate the large deformation phenomenon in strain localization analysis, the dynamic finite element formulation for a two‐phase mixture is derived in the updated Lagrangian framework. The shear band development is shown through the distributions of viscoplastic shear strain, the axial strain, the mean effective stress, and the pore water pressure in a normally consolidated clay specimen. From the local stress–strain relations, more brittleness is found inside the shear bands than outside of them. The effects of partially drained conditions and mesh‐size dependency on the shear banding are also investigated. The effect of a partially drained boundary is found to be insignificant on the dynamic shear band propagation because of the rapid rate of applied loading and low permeability of the clay. Using the finer mesh results in slightly narrower shear bands; nonetheless, the results manifest convergency through the mesh refinement in terms of the overall shape of shear banding and stress–strain relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
Antiphase domains (APD's) of pigeonite lamellae in natural and heated augite crystals from the Hakonetoge andesite have been examined by a transmission electron microscope (TEM). Antiphase boundaries (APB's) of the pigeonite lamellae in natural specimens have a sigmoidal shape cutting the c axis in (010) sections. APB's in specimens heated at temperatures above the high-low inversion and then quenched are nearly parallel to the c axis with almost straight boundaries. These observations indicate that the preferred orientation of APB's in (010) sections depends on cooling rate; at fast colling rates the APB's are nearly parallel to the c axis, whereas at slower cooling rates they are inclined to the c axis. The cooling rate of the natural augite specimen from Hakonetoge is estimated to be about 0.01 °C/h from the experimentally determined time-temperature-transformation (TTT) diagram for the APB orientations. APD sizes are large in specimens quenched from above the inversion temperature; they are at a minimum after cooling rates of around 1–0.1 °C/h, and then become larger with slower cooling rates.  相似文献   
7.
Apparent fracture toughness in Mode I of microcracking materials such as rocks under confining pressure is analyzed based on a cohesive crack model. In rocks, the apparent fracture toughness for crack propagation varies with the confining pressure. This study provides analytical solutions for the apparent fracture toughness using a cohesive crack model, which is a model for the fracture process zone. The problem analyzed in this study is a fluid-driven fracture of a two-dimensional crack with a cohesive zone under confining pressure. The size of the cohesive zone is assumed to be negligibly small in comparison to the crack length. The analyses are performed for two types of cohesive stress distribution, namely the constant cohesive stress (Dugdale model) and the linearly decreasing cohesive stress. Furthermore, the problem for a more general cohesive stress distribution is analyzed based on the fracture energy concept. The analytical solutions are confirmed by comparing them with the results of numerical computations performed using the body force method. The analytical solution suggests a substantial increase in the apparent fracture toughness due to increased confining pressures, even if the size of the fracture process zone is small.  相似文献   
8.
We have conducted a multi-model intercomparison of cloud-water in five state-of-the-art AGCMs run for control and doubled carbon dioxide climates. The most notable feature of the differences between the control and doubled carbon dioxide climates is in the distribution of cloud-water in the mixed-phase temperature band. The difference is greatest at mid and high latitudes. We found that the amount of cloud ice in the mixed phase layer in the control climate largely determines how much the cloud-water distribution changes for the doubled carbon dioxide climate. Therefore evaluation of the cloud ice distribution by comparison with data is important for future climate sensitivity studies. Cloud ice and cloud liquid both decrease in the layer below the melting layer, but only cloud liquid increases in the mixed-phase layer. Although the decrease in cloud-water below the melting layer occurs at all latitudes, the increase in cloud liquid in the mixed-phase layer is restricted to those latitudes where there is a large amount of cloud ice in the mixed-phase layer. If the cloud ice in the mixed-phase layer is concentrated at high latitudes, doubling of carbon dioxide might shift the center of cloud water distribution poleward which could decrease solar reflection because solar insolation is less at higher latitude. The magnitude of this poleward shift of cloud water appears to be larger for the higher climate sensitivity models, and it is consistent with the associated changes in cloud albedo forcing. For the control climate there is a clear relationship between the differences in cloud-water and relative humidity between the different models, for both magnitude and distribution. On the other hand the ratio of cloud ice to cloud-water follows the threshold temperature which is determined in each model. Improved measurements of relative humidity could be used to constrain the modeled representation of cloud water. At the same time, comparative analysis in global cloud resolving model simulations is necessary for further understanding of the relationships suggested in this paper.  相似文献   
9.
The ASCA and BeppoSAX spectra of the Circinus galaxy and NGC 1068 are analysed and compared with photoionization models based on cloudy . In the case of Circinus, a single, mildly ionized reflector can account for the line spectrum, while in NGC 1068 at least three different reflectors (with different ionization states) are needed. We suggest that the reflector in Circinus and the low ionized one in NGC 1068 are the inner and visible part of the material responsible for the X-ray absorption. With this assumption, we estimate for the inner radius of the absorber a value of 0.2 pc for Circinus and of a few parsecs for NGC 1068.  相似文献   
10.
Real-time multi-model decadal climate predictions   总被引:1,自引:1,他引:0  
We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Niña in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Niña. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Niño3 region is predicted to warm slightly by about 0.5 °C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号