首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   6篇
自然地理   1篇
  2023年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2006年   1篇
排序方式: 共有7条查询结果,搜索用时 125 毫秒
1
1.
2.
Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.  相似文献   
3.
To deal with the challenge of groundwater over-extraction in arid and semi-arid environments, it is necessary to establish management strategies based on the knowledge of hydrogeological conditions, which can be difficult in places where hydrogeological data are dispersed, scarce or present potential misinformation. Groundwater levels in the southern Jordan Valley (Jordan) have decreased drastically in the last three decades, caused by over-extraction of groundwater for irrigation purposes. This study presents a local, two-dimensional and transient numerical groundwater model, using MODFLOW, to characterise the groundwater system and the water balance in the southern Jordan Valley. Furthermore, scenarios are simulated regarding hydrological conditions and management options, like extension of arable land and closure of illegal wells, influencing the projection of groundwater extraction. A limited dataset, literature values, field surveys, and the ‘crop water-requirement method’ are combined to determine boundary conditions, aquifer parameters, and sources and sinks. The model results show good agreement between predicted and observed values; groundwater-level contours agree with the conceptual model and expected flow direction, and, in terms of water balance, flow volumes are in accordance with literature values. Average annual water consumption for irrigation is estimated to be 29 million m3 and simulation results show that a reduction of groundwater pumping by 40% could recover groundwater heads, reducing the water taken from storage. This study presents an example of how to develop a local numerical groundwater model to support management strategies under the condition of data scarcity.  相似文献   
4.
5.
6.
Gravity Recovery and Climate Experiment (GRACE) derived groundwater storage (GWS) data are compared with in-situ groundwater levels from five groundwater basins in Jordan, using newly gridded GRACE GRCTellus land data. It is shown that (1) the time series for GRACE-derived GWS data and in-situ groundwater-level measurements can be correlated, with R 2 from 0.55 to 0.74, (2) the correlation can be widely ascribed to the seasonal and trend component, since the detrended and deseasonalized time series show no significant correlation for most cases, implying that anomalous signals that deviate from the trend or seasonal behaviour are overlaid by noise, (3) estimates for water losses in Jordan based on the trend of GRACE data from 2003 to 2013 could be up to four times higher than previously assumed using estimated recharge and abstraction rates, and (4) a significant time-lagged cross correlation of the monthly changes in GRACE-derived groundwater storage and precipitation data was found, suggesting that the conventional method for deriving GWS from GRACE data probably does not account for the typical conditions in the study basins. Furthermore, a new method for deriving plausible specific yields from GRACE data and groundwater levels is demonstrated.  相似文献   
7.
Zhang  Jiawen  Liesch  Tanja  Chen  Zhao  Goldscheider  Nico 《Hydrogeology Journal》2023,31(5):1197-1208

Karst areas contain valuable groundwater resources and high biodiversity, but are particularly vulnerable to climate change and human impacts. Land-use change is the cause and consequence of global environmental change. The releases of the Climate Change Initiative-Land Cover (CCI-LC) and World Karst Aquifer Map (WOKAM) datasets have made it possible to explore global land-use changes in karst areas. This paper firstly analyses the global karst land-use distribution in 2020, as well as the land-use transition characteristics between 1992 and 2020. Then, two indicators, proportion of land-use change and dominant type of land-use change, are proposed to identify the spatial characteristics of land-use change in global karst areas. Finally, three examples of land-use change in karst areas are analyzed in detail. Land-use types and proportions of the global karst areas from large to small are as follows: forest (31.78%), bare area (27.58%), cropland (19.02%), grassland (10.87%), shrubland (7.21%), wetland (1.67%), ice and snow (1.16%) and urban (0.71%). The total area of global karst land-use change is 1.30 million km2, about 4.85% of global karst surface. The land-use change trend of global karst is dominated by afforestation, supplemented by scattered urbanization and agricultural reclamation. The tropical climate has a higher intensity of land-use change. Regions of agricultural reclamation are highly consistent with the population density. These results reflect the impact of human activities and climate change on land-use changes in global karst areas, and serve as a basis for further research and planning of land resource management.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号