首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   3篇
地球物理   16篇
地质学   1篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1993年   1篇
  1990年   1篇
  1983年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The dynamic behaviour of a simplified model of a multi-storey building, supported by an elastic foundation and allowed to uplift, is examined. The building is modelled by an n-degree-of-freedom oscillator, while the foundation is represented by a viscously damped two-spring model which permits uplift. This model has been shown in previous studies to be an accurate approximation to the more realistic but more complex Winkler foundation. Approximate values for the characteristic frequencies of the interacting system are presented and a simple, first-mode solution is developed. The response of the system is non-linear and the apparent fundamental period increases with the amount of lift-off. In contrast to the first mode of the superstructure which participates strongly in the interaction, the second and higher modes of the building are not affected significantly by either the interaction with the soil or the uplift. The study shows that lift-off results in larger rocking motion of the structure, but it is not clear from the analysis and the example whether the interfloor displacements are consistently increased or decreased, since this appears to depend on the properties of the system and the excitation.  相似文献   
2.
This paper presents a macroelement formulation for the prediction of the planar dynamic response of inelastic deformable rocking bodies. The formulation is based on a previous macroelement developed by the authors able to describe the cyclic response of inelastic rocking bodies, which takes into account the deformability both along the height of the member, as well as near the rocking end. Modifications of this formulation to account for other motion modes of rocking members during their dynamic response, namely, sliding and upthrow, as well as modifications to account for damping in a uniform manner during the whole motion, including impacts, are introduced. The dynamic response predicted by the macroelement for free-standing rigid and deformable rocking bodies is presented and compared with existing theoretical solutions, and the effect of deformability, damping, inelasticity, and friction on the response is discussed.  相似文献   
3.
The special interest produced by near-field directivity records and their effect on structural response has given a new significance in the velocity time history, its pulse-like content, and relevant parameters and indices. Recent research has shown that directivity pulses inherent in these records govern the linear and the nonlinear response of a wide range of structures. Based on this observation, it is suggested in this paper that a truncated ground motion, limited to the duration of the predominant velocity pulse, can be efficiently used to predict the structural response, instead of the base motion with the total duration, reducing significantly the required runtimes. The proposed methodology is verified for a series of medium to high rise reinforced concrete buildings, for which nonlinear time-history analyses are performed for a vast suite of pulse-like near-field records applied as base excitations with their total duration and the proposed truncated one. Comparison of the results for the response displacements and forces shows very good agreement, permitting the acceptance of the pulse duration as the efficient strong motion time interval of the original record, which determines the response and, thus, it can be used for nonlinear structural analyses.  相似文献   
4.
Experimental results concerning the earthquake response of a marble model of a classical column are reported herein. The model was a 1: 3 scale replica of a column of the Parthenon on the Acropolis of Athens, made from the same material as the original. Several earthquake motions, scaled appropriately in order to cause significant rocking but no collapse of the column, were used as the excitation. The base motion was applied in plane (in one horizontal and the vertical direction) or in space (in two horizontal and the vertical direction), using the shaking table facility at the Laboratory for Earthquake Engineering of the National Technical University of Athens. It was found that the column might undergo large deformations during the shaking, which are not necessarily reflected by the residual displacements at the end of it. For planar excitations, significant out‐of‐plane displacements can happen, triggered by the inevitable imperfections of the specimen. It was also verified that the response is very sensitive, even to small changes of the geometry or the input motion parameters. For this reason, the experiments were not repeatable and ‘identical’ experiments produced different results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
5.
Accurate reproduction of time series with diverse frequency characteristics is a central issue in structural testing. This is true not only for simple experimental tests performed by reaction walls or shaking tables but also for more sophisticated ones, such as hybrid testing. Especially in the latter case, where actual feedback from an ongoing test is used in the calculation of the next excitation value, any possible mismatch may be fatal for both the validity of the test and the safety. The objective of this study is to propose a framework for the adaptive inverse control of shaking tables, which succeeds in this matching to a certain degree. By formulating a critical set of design specifications that correspond to safety, implementation, robustness and ease of use, the conducted research results in a design that is based on a modified version of the filtered‐X algorithm with very competitive features. These are the following: (i) default operation in hard real‐time and acceleration mode; (ii) very low hardware requirements; (iii) effective cancelation of the shaking table's dynamics; and (iv) robustness against specimen dynamics. For its practical evaluation, the method is applied to shaking table waveform replication tests under the installation of an approximately linear specimen of sufficiently high mass and complex geometry. The results are promising and suggest further research toward this field, especially in conjunction with hybrid testing, as the method retains certain global applicability attributes and it can be easily extended to other transfer systems, apart from shaking tables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
The seismic response of free‐standing classical columns is analysed numerically through implementation of the distinct element method. Typical sections of two ancient temples are modelled and studied parametrically, in order to identify the main factors affecting the stability and to improve our understanding of the earthquake behaviour of such structures. The models were first subjected to harmonic base motions. The analysis showed that, for frequencies usually encountered in earthquake motions, intact multi‐drum free‐standing columns can withstand large amplitude harmonic excitations without collapse. The dynamic resistance decreases rapidly as the period of the harmonic excitation increases. Imperfections, such as initial tilt of the column or loss of contact area due to edge damage, also reduce the stability of the system significantly. The effects of such imperfections could be additive and the cumulative effect of many imperfections may render deteriorating abandoned monuments vulnerable to earthquakes. The response of more complete sections of the temple, such as two columns coupled with an architrave, did not deviate systematically from that of the single multi‐drum column or indeed of the equivalent single block. Therefore, a much simpler single block analysis can be used to size‐up the seismic threat to the monument. The model of the column of the Temple of Apollo at Bassae was also tested under recorded earthquake motions by scaling‐up the acceleration amplitude progressively until collapse of the column. It was found that the columns are particularly vulnerable to long‐period impulsive earthquake motions. A comparison of the instability thresholds associated with harmonic excitations and earthquake motions throws more light onto the dynamic response: it appears that around three cycles of monochromatic excitation at the predominant period of the expected earthquake motions lead to a gross prediction of the stability of a classical column during an earthquake. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
7.
We report on the initial phase of assessing numerically the seismic vulnerability of sections of the Temple of Apollo in Bassae, in the W. Peloponnesus, Greece. The site is exposed to large subduction earthquakes and to smaller local extensional events. In this phase the only link with the seismotectonic environment is the selection of representative recorded accelerograms for numerical analysis. The analysis confirms the highly non-linear nature of the response of megalithic structures relying for their stability on the friction and cohesion between the constituent blocks. Intact sections of the Temple showed substantial resistance to strong ground motions due to their capacity to absorb energy with large relative movements of the building blocks that do not impair the stability of the structure. However, imperfections typical of the present condition of the monument, namely deterioration of the building stones and of the foundation material, substantially reduce the stability threshold. Powerful numerical tools are available to assist rational schemes for the protection of ancient structures and to subject archaeological hypotheses to numerical tests. This analysis quantifies the effects of weaknesses of the structure and allows testing the effectiveness of strengthening procedures. In the archaeological context there is a strong interaction with the ongoing geodynamic processes.  相似文献   
8.
Strong shaking of structures during large earthquakes may result in some cases in partial separation of the base of the structure from the foundation. A simplified problem of this type, the dynamic response of a rocking rigid block allowed to uplift, is examined here. Two foundation models are considered: the Winkler foundation and the much simpler ‘two-spring’ foundation. It is shown that an equivalence between these two models can be established, so that one can work with the much simpler two-spring foundation. Simple solutions of the equations of motion are developed and simplified methods of analysis are proposed. In general, uplift leads to a softer vibrating system which behaves non-linearly, although the response is composed of a sequence of linear responses. As a result the apparent rocking period increases with the amount of lift-off. The corresponding apparent ratio of critical damping decreases, in general, with the amplitude of the response. Compared to the case without lift-off, the response of the system may increase or decrease because of the uplift, depending on the excitation and the parameters of the system.  相似文献   
9.
A shift approach is presented for evaluating and interpreting the response of rigid‐perfectly plastic single‐degree‐of‐freedom systems to dynamic loading. Scaling laws for such systems are, as the term suggests, multiplicative in nature, relating peak dynamic response to products of key problem parameters such as linear spectral coordinates, force reduction coefficient and peak values of the excitation and its time derivatives. Contrary to classical laws, the proposed approach is additive, imposing a shift in the ordinates and the abscissa of the excitation function by means of a set of parameters uniquely related to the yielding resistance of the system. The dynamic response is then obtained by integrating the modified excitation function in a linear‐like manner within a particular yielding branch, for the nonlinearity is incorporated into the forcing term. The mathematical validity of the approach is demonstrated analytically and its importance is highlighted for systems with symmetric yielding resistance subjected to near‐fault earthquake motions. The modified excitation function may be discontinuous between different yielding branches and relates uniquely to the development of plastic deformation. It is thereby referred to as Plastic Input Motion (PIM). It is shown that the ordinates and the duration of this function may be significantly (yet not necessarily) smaller than those of the original ground motion depending on yield strength. The relationship of the proposed approach to the existing methods and parameters of earthquake engineering such as Newmark's sliding block and relative ground acceleration, is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
10.
The dynamic behaviour of systems consisting of two blocks, one placed on the top of the other, and free to rock without sliding, is examined in this analysis. The equations of motion for each ‘mode’ of vibration are derived and criteria for the initiation of rocking and the transition between modes are given. During vibration, the system continuously changes from one mode to another and this makes the response non-linear. This transition may be accompanied by impact, in which case dissipation of energy occurs, the amount of which depends on the relative velocities and the dimensions of the blocks. Also, redistribution of the kinetic energy of the system in the blocks happens. In most cases, the fractional contribution from the upper block to the system energy increases, which results in a larger and longer response of the top block, compared to the vibration of the lower one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号