首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   5篇
地球物理   1篇
地质学   11篇
天文学   1篇
自然地理   5篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Controversies around the Messinian salinity crisis (MSC) are because of the difficulties in establishing genetic and stratigraphic relationships between its deep and shallow‐water record. Actually, the Sicilian foreland basin shows both shallow and deep‐water Messinian records, thus offering the chance to reconstruct comprehensive MSC scenarios. The Lower Gypsum of Sicily comprises primary and resedimented evaporites separated in space and time by the intra‐Messinian unconformity. A composite unit including halite, resedimented gypsum and Calcare di Base accumulated between 5.6 and 5.55 Ma in the main depocentres; it records the acme of the Messinian Salinity Crisis during a tectonic phase coupled with sea‐level falls at glacials TG14‐TG12. These deposits fully post‐date primary gypsum, which precipitated in shallow‐water wedge‐top and foreland ramp basins between 5.96 and 5.6 Ma. This new stratigraphic framework results in a three‐stage MSC scenario characterized by different primary evaporite associations: selenite in the first and third stages, carbonate, halite and potash salt in the second one associated with hybrid resedimented evaporites.  相似文献   
2.
Ronchetti  F.  Deiana  M.  Lugli  S.  Sabattini  M.  Critelli  V.  Aguzzoli  A.  Mussi  M. 《Hydrogeology Journal》2023,31(3):601-619
Hydrogeology Journal - The Poiano karst spring is located in the North Apennines (Italy) and it drains Triassic evaporite rocks with a mean discharge of hundreds of liters/second. Two...  相似文献   
3.
G. Testa  S. Lugli 《Sedimentary Geology》2000,130(3-4):249-268
The Messinian succession of Tuscany (central Italy) contains three evaporitic units. Among the several exposed evaporitic lithofacies, only selenitic gypsum precipitated directly from evaporating brines. All the other facies, nodular microcrystalline gypsum, gypsarenites and gypsum laminites, despite their macroscopic differences, display the same petrographic textures, indicating that they are the product of dehydration of gypsum to give anhydrite which has been successively rehydrated to secondary gypsum. These secondary facies show an entire array of textures ranging from cloudy ameboid (xenotopic) with anhydrite relics, to idiotopic without anhydrite relics, that are here interpreted as a sequence of progressive stages of rehydration. The presence of completely hydrated petrofacies at the core of nodules which display a less hydrated rim suggests that these rocks have undergone at least two cycles of a dehydration–rehydration process. This interpretation is supported by the presence of satin spar veins that are replaced by microcrystalline gypsum. Satin spar itself is considered to be a by-product of anhydrite hydration. The first dehydration–rehydration event affected the entire gypsum deposit, producing a completely hydrated (idiotopic) facies together with satin spar veins; the second affected only veins, fractures and the rims of nodules, turning the first generation of satin spar and idiotopic gypsum into cloudy ameboid gypsum. Sedimentary structures typical of sabkha environments indicate for the youngest formation that the first dehydration and rehydration process occurred syndepositionally. The preservation of primary gypsum facies only at sites with condensed sections, indicate for the oldest two formations that the first dehydration event occurred upon burial. This event has been estimated to have occurred in the earliest Pliocene. After the Early Pliocene, dehydration was favored even at shallow depths, due to an increased heat flow related with the emplacement of local crustal magmatic bodies. Rehydration possibly occurred when these formations were uplifted and exposed to ground and/or meteoric water. The Volterra Basin has undergone alternating subsidence and uplift events, that can account for two dehydration–rehydration processes at least, also driven by alternating circulation, in the tectonic fractures, of fresh and salty water, the latter derived from dissolution of Messinian halite.  相似文献   
4.
This integrated study (field observations, micropalaeontology, magnetostratigraphy, geochemistry, borehole data and seismic profiles) of the Messinian–Zanclean deposits on Zakynthos Island (Ionian Sea) focuses on the sedimentary succession recording the pre‐evaporitic phase of the Messinian salinity crisis (MSC) through the re‐establishment of the marine conditions in a transitional area between the eastern and the western Mediterranean. Two intervals are distinguished through the palaeoenvironmental reconstruction of the pre‐evaporitic Messinian in Kalamaki: (a) 6.45–6.122 Ma and (b) 6.122–5.97 Ma. Both the planktonic foraminifer and the fish assemblages indicate a cooling phase punctuated by hypersalinity episodes at around 6.05 Ma. Two evaporite units are recognized and associated with the tectonic evolution of the Kalamaki–Argassi area. The Primary Lower Gypsum (PLG) unit was deposited during the first MSC stage (5.971–5.60 Ma) in late‐Messinian marginal basins within the pre‐Apulian foreland basin and in the wedge‐top (<300 m) developed over the Ionian zone. During the second MSC stage (5.60–5.55 Ma), the PLG evaporites were deeply eroded in the forebulge–backbulge and the wedge‐top areas, and supplied the foreland basin's depocentre with gypsum turbidites assigned to the Resedimented Lower Gypsum (RLG) unit. In this study, we propose a simple model for the Neogene–Pliocene continental foreland‐directed migration of the Hellenide thrusting, which explains the palaeogeography of the Zakynthos basin. The diapiric movements of the Ionian Triassic evaporites regulated the configuration and the overall subsidence of the foreland basin and, therefore, the MSC expression in this area.  相似文献   
5.
We propose a revised age calibration of the Messinian salinity crisis onset in the Mediterranean at 5.971 Ma based on the recognition of an extra gypsum cycle in the transitional interval of the Perales section (Sorbas basin, Spain) and the revision of the magnetostratigraphy of the Monticino section (Vena del Gesso basin, Italy). This age re‐calibration allows to state more accurately that: (i) the interval encompassing the MSC‐onset is continuous, thus ruling out any erosional feature or stratigraphic hiatus related to a major sea‐level fall affecting the Mediterranean; (ii) the first gypsum was deposited during the summer insolation peak at 5.969 Ma associated with an eccentricity minimum and roughly coincident with glacial stage TG32; (iii) the MSC‐onset was preconditioned by the tectonically‐driven reduction of the hydrological exchanges with the Atlantic Ocean and finally triggered by glacial conditions in the northern hemisphere and by arid conditions in northern Africa.  相似文献   
6.
We present the Messinian evaporite suite (Mediterranean region) and the Solfatara hydrothermal system (Phlegraean Fields volcanic province, Italy), discuss their implications for understanding the origin of sulfates on Mars and show preliminary sets of VNIR laboratory and in situ reflectance spectra of rocks from these geologic systems. The choice was based on a number of evidence relative to Mars: (1) the chemistry of the Martian sulfates, suggesting fluid interactions with possibly alkali-basaltic rocks and/or regolith; (2) close range evidence of sulfates within sedimentary formations on Mars; (3) sulfate spectral signatures associated to large-scale layered patterns interpreted as thick depositional systems on Mars. The Messinian evaporites comprise three units: primary shallow-water sulfates (primary lower gypsum: PLG), shallow- to deep-water mixed sulfates and clastic terrigenous deposits (resedimented lower gypsum: RLG), and shallow-water associations of primary sulfates and clastic fluvio-deltaic deposits (upper evaporites: UE). The onset of the Messinian evaporites records the transition to negative hydrologic budget conditions associated with the Messinian Salinity Crisis, which affected the entire Mediterranean basin and lasted about 640 kyr. The Solfatara is a still evolving hydrothermal system that provides epithermal deposits precipitated from the interaction of fluids and trachybasaltic to phonolitic rocks. Thermal waters include alkali-chloride, alkali-carbonate and alkali-sulfate endmembers.The wide spectrum of sedimentary gypsum facies within the Messinian formation includes some of the depositional environments hitherto identified on Mars and others not found on Mars. The PLG unit includes facies associations correlated over long distances, that could be a possible analog of the stratified rock units exposed from Arabia Terra at least as far as Valles Marineris. The facies cycles within the UE unit can be compared to the sequences of strata observed in craters such as Holden and Eberswalden. The UE unit records paleoenvironmental changes which are ultimately controlled by terrestrial climatic variations. They can be considered as a reliable climatic proxy and may be useful for the reconstruction of climatic events on Mars. The intermediate Messinian RLG unit has not, at present, a well-defined depositional counterpart on Mars, although there are some similarities with the northern lowlands and Vastitas Borealis Formation. The dramatic variation of hydrologic budget conditions at the onset of the Messinian evaporites may provide criteria for the interpretation of similar variations on Mars.The volcanic rocks at the Solfatara bear some similarities with the “alkaline magmatic province” observed at the Gusev crater on Mars, and the assemblages of hydrothermal phases resulting from the Solfatara's parent rocks could be analogues for processes involving Gusev-type rocks.The Messinian sulfates have a prevalent Ca-sulfatic composition and wide textural variability. Preliminary laboratory reflectance spectra of rock samples in the VNIR region reveal the signature of sulfates and mixtures of several Fe-bearing phases. At the Solfatara, in situ reflectance measurements of epithermal minerals close to active fumaroles showed the presence of Fe-bearing sulfates, hematite, Al- and K-sulfates and abundant amorphous fraction. XRD analysis supported this interpretation.The range of depositional facies observed in the Messinian units and the variety of minerals detected in the Solfatara will be useful for the interpretation of close range data of Mars. The spectral characterization at various scales of the Messinian sedimentary facies and the Solfatara hydrothermal minerals will both help in the exploration of Mars from orbit and with close range inspection.  相似文献   
7.
In this paper we present petrographic and geochemical data of sulfate mineral deposits in northeast Nakhon Sawan, central Thailand, and provide new constraints on their age. The deposits are made up mainly of strongly deformed nodular and massive gypsum in the upper part, and less deformed layered anhydrite in the lower part. They are intruded by andesitic dikes that contain Middle Triassic zircons (ca 240 Ma). These dikes are probably part of the regional magmatic activity of the Sukhothai Arc during the Early to Middle Triassic. Sulfur (δ34S) and strontium (87Sr/86Sr) isotopic compositions of the sulfates range from 15.86 ‰ to 16.26 ‰ and from 0.70810 to 0.70817, respectively. Comparisons with the Phanerozoic seawater isotopic evolution curve indicate that those values are best explained by precipitation of the sulfates from Carboniferous seawater, in particular seawater of late Mississippian age (ca 326 Ma), and this would be consistent with previous studies of calcareous fossils in the limestones that crop out around this site. Our interpretation is that evaporitic gypsum was originally precipitated from hypersaline seawater on a shallow lagoon or shelf on the Khao Khwang Platform during the Serpukhovian, and that this gypsum changed to anhydrite during early burial. The anhydrite was then cut by andesitic dikes during the Middle Triassic, and more recently the upper part of which was rehydrated during exhumation to form secondary gypsum near the surface.  相似文献   
8.
The in situ measurement of Sr isotopes in carbonates by MC‐ICP‐MS is limited by the availability of suitable microanalytical reference materials (RMs), which match the samples of interest. Whereas several well‐characterised carbonate reference materials for Sr mass fractions > 1000 µg g?1 are available, there is a lack of well‐characterised carbonate microanalytical RMs with lower Sr mass fractions. Here, we present a new synthetic carbonate nanopowder RM with a Sr mass fraction of ca. 500 µg g?1 suitable for microanalytical Sr isotope research (‘NanoSr’). NanoSr was analysed by both solution‐based and in situ techniques. Element mass fractions were determined using EPMA (Ca mass fraction), as well as laser ablation and solution ICP‐MS in different laboratories. The 87Sr/86Sr ratio was determined by well‐established bulk methods for Sr isotope measurements and is 0.70756 ± 0.00003 (2s). The Sr isotope microhomogeneity of the material was determined by LA‐MC‐ICP‐MS, which resulted in 87Sr/86Sr ratios of 0.70753 ± 0.00007 (2s) and 0.70757 ± 0.00006 (2s), respectively, in agreement with the solution data within uncertainties. Thus, this new reference material is well suited to monitor and correct microanalytical Sr isotope measurements of low‐Sr, low‐REE carbonate samples. NanoSr is available from the corresponding author.  相似文献   
9.
Diatom remains were analysed in two short sediment cores from a subalpine Italian lake (Lake Orta), known for its major industrial pollution dating from the late 1920s, which has only recently been stopped. Copper was recognised as the main toxic agent for diatoms during the first 30 years of pollution (peak value: 100 g l-1 in the late 1950s). A diatom community similar to other deep subalpine lakes existed in the past, and was disrupted by the pollution events. Acute and long-term effects of Cu contamination were tracked by changes in three distinct groups of species around the sharp boundary corresponding to the onset of the pollution. These groups were respectively composed of: (1) Species quickly extirpated by the discharge, mostly belonging to Fragilaria and Cyclotella and never reappearing; (2) Species apparently not affected, or not immediately affected, by the pollution, showing no definite trends with time. Synedra species, with various deformities, were conspicuous among these; (3) Species with accumulation rates increasing with time irrespective of pollution, mostly belonging to Achnanthes. Properties and tolerances of these groups (e.g. Synedra and Achnanthes) are discussed in detail.  相似文献   
10.
A revised stratigraphic framework for the Messinian succession of Cyprus is proposed demonstrating that the three‐stage model for the Messinian salinity crisis recently established for the Western Mediterranean also applies to the Eastern Mediterranean, at least for its marginal basins. This analysis is based on a multidisciplinary study of the Messinian evaporites and associated deposits exposed in the Polemi, Pissouri, Maroni/Psematismenos and Mesaoria basins. Here, we document for the first time that the base of the unit usually referred to the ‘Lower Evaporites’ in Cyprus does not actually correspond to the onset of the Messinian salinity crisis. The basal surface of this unit rather corresponds to a regional‐scale unconformity, locally associated with an angular discordance, and is related to the erosion and resedimentation of primary evaporites deposited during the first stage of the Messinian salinity crisis. This evidence suggests that the ‘Lower Evaporites’ of the southern basins of Cyprus actually belong to the second stage of the Messinian salinity crisis; they can be thus ascribed to the Resedimented Lower Gypsum unit that was deposited between 5.6 and 5.5 Ma and is possibly coeval to the halite deposited in the northern Mesaoria basin. Primary, in situ evaporites of the first stage of the Messinian salinity crisis were not preserved in Cyprus basins. Conversely, shallow‐water primary evaporites deposited during the third stage of the Messinian salinity crisis are well preserved; these deposits can be regarded as the equivalent of the Upper Gypsum of Sicily. Our study documents that the Messinian stratigraphy shows many similarities between the Western and Eastern Mediterranean marginal basins, implying a common and likely coeval development of the Messinian salinity crisis. This could be reflected also in intermediate and deep‐water basins; we infer that the Lower Evaporites seismic unit in the deep Eastern Mediterranean basins could well be mainly composed of clastic evaporites and that its base could correspond to the Messinian erosional surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号