首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   4篇
测绘学   1篇
大气科学   1篇
地球物理   8篇
地质学   18篇
海洋学   1篇
综合类   1篇
自然地理   1篇
  2020年   2篇
  2019年   2篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有31条查询结果,搜索用时 312 毫秒
1.
The Trypali carbonate unit (Upper Triassic), which crops out mainly in central‐western Crete, occurs between the parautochthonous series (Plattenkalk or Talea Ori‐Ida series, e.g. metamorphic Ionian series) and the Tripolis nappe (comprising the Tripolis carbonate series and including a basal Phyllite–Quartzite unit). It consists of interbedded dolomitic layers, represented principally by algally laminated peloidal mudstones, foraminiferal, peloidal and ooidal grainstones, as well as by fine‐grained detrital carbonate layers, in which coarse baroque dolomite crystals and dolomite nodules are dispersed. Baroque dolomite is present as pseudomorphs after evaporite crystals (nodules and rosettes), which grew penecontemporaneously by displacement and/or replacement of the host sediments (sabkha diagenesis). However, portions of the evaporites show evidence of resedimentation. Pre‐existing evaporites predominantly consisted of skeletal halite crystals that formed from fragmentation of pyramidal‐shaped hoppers, as well as of anhydrite nodules and rosettes (salt crusts). All microfacies are characteristic of peritidal depositional environments, such as sabkhas, tidal flats, shallow hypersaline lagoons, tidal bars and/or tidal channels. Along most horizons, the Trypali unit is strongly brecciated. These breccias are of solution‐collapse origin, forming after the removal of evaporite beds. Evaporite‐related diagenetic fabrics show that there was extensive dissolution and replacement of pre‐existing evaporites, which resulted in solution‐collapse of the carbonate beds. Evaporite replacement fabrics, including calcitized and silicified evaporite crystals, are present in cements in the carbonate breccias. Brecciation was a multistage process; it started in the Triassic, but was most active in the Tertiary, in association with uplift and ground‐water flow (telogenetic alteration). During late diagenesis, in zones of intense evaporite leaching and brecciation, solution‐collapse breccias were transformed to rauhwackes. The Trypali carbonate breccias (Trypali unit) are lithologically and texturally similar to the Triassic solution‐collapse breccias of the Ionian zone (continental Greece). The evaporites probably represent a major diapiric injection along the base of the parautochthonous series (metamorphic Ionian series) and also along the overthrust surface separating the parautochthonous series from the Tripolis nappe (Phyllite–Quartzite and Tripolis series). The injected evaporites were subsequently transformed into solution‐collapse breccias.  相似文献   
2.
The Pagassitikos Gulf in Greece is a semi-enclosed bay with a maximum depth of 102 m. According to the present-day bathymetric configuration and the sea level during the latest Pleistocene, the gulf would have been isolated from the open sea, forming a palaeolake since ~32 cal. ka b.p. Sediment core B-4 was recovered from the deepest sector of the gulf and revealed evidence of a totally different depositional environment in the lowest part of the core: this contained light grey-coloured sediments, contrasting strongly with overlying olive grey muds. Multi-proxy analyses showed the predominance of carbonate minerals (aragonite, dolomite and calcite) and gypsum in the lowest part of the core. Carbonate mineral deposition can be attributed to autochthonous precipitation that took place in a saline palaeolake with high evaporation rates during the last glacial–early deglacial period; the lowest core sample to be AMS 14C dated provided an age of 19.53 cal. ka b.p. The palaeolake was presumably reconnected to the open sea at ~13.2 cal. ka b.p. during the last sea-level rise, marking the commencement of marine sedimentation characterised by the predominance of terrigenous aluminosilicates and fairly constant depositional conditions lasting up to the present day.  相似文献   
3.
For the Quaternary and Neogene, aragonitic biogenic and abiogenic carbonates are frequently exploited as archives of their environment. Conversely, pre‐Neogene aragonite is often diagenetically altered and calcite archives are studied instead. Nevertheless, the exact sequence of diagenetic processes and products is difficult to disclose from naturally altered material. Here, experiments were performed to understand biogenic aragonite alteration processes and products. Shell subsamples of the bivalve Arctica islandica were exposed to hydrothermal alteration. Thermal boundary conditions were set at 100°C, 175°C and 200°C. These comparably high temperatures were chosen to shorten experimental durations. Subsamples were exposed to different 18O‐depleted fluids for durations between two and twenty weeks. Alteration was documented using X‐ray diffraction, cathodoluminescence, fluorescence and scanning electron microscopy, as well as conventional and clumped isotope analyses. Experiments performed at 100°C show redistribution and darkening of organic matter, but lack evidence for diagenetic alteration, except in Δ47 which show the effects of annealing processes. At 175°C, valves undergo significant aragonite to calcite transformation and neomorphism. The δ18O signature supports transformation via dissolution and reprecipitation, but isotopic exchange is limited by fluid migration through the subsamples. Individual growth increments in these subsamples exhibit bright orange luminescence. At 200°C, valves are fully transformed to calcite and exhibit purple‐blue luminescence with orange bands. The δ18O and Δ47 signatures reveal exchange with the aqueous fluid, whereas δ13C remains unaltered in all experiments, indicating a carbonate‐buffered system. Clumped isotope temperatures in high‐temperature experiments show compositions in broad agreement with the measured temperature. Experimentally induced alteration patterns are comparable with individual features present in Pleistocene shells. This study represents a significant step towards sequential analysis of diagenetic features in biogenic aragonites and sheds light on reaction times and threshold limits. The limitations of a study restricted to a single test organism are acknowledged and call for refined follow‐up experiments.  相似文献   
4.
Abstract

The quantification of the sediment carrying capacity of a river is a difficult task that has received much attention. For sand-bed rivers especially, several sediment transport functions have appeared in the literature based on various concepts and approaches; however, since they present a significant discrepancy in their results, none of them has become universally accepted. This paper employs three machine learning techniques, namely artificial neural networks, symbolic regression based on genetic programming and an adaptive-network-based fuzzy inference system, for the derivation of sediment transport formulae for sand-bed rivers from field and laboratory flume data. For the determination of the input parameters, some of the most prominent fundamental approaches that govern the phenomenon, such as shear stress, stream power and unit stream power, are utilized and a comparison of their efficacy is provided. The results obtained from the machine learning techniques are superior to those of the commonly-used sediment transport formulae and it is shown that each of the input combinations tested has its own merit, as they produce similarly good results with respect to the data-driven technique employed.
Editor Z.W. Kundzewicz  相似文献   
5.
The estimation of settlements, differential settlements and relative rotations on critical positions of the foundation is indispensable when carrying out analyses of both ultimate and serviceability limit states. The use of finite element method is recommended in cases where soil?Cstructure interaction is expected to be significant. The scope of this paper is a contribution to the investigation of general trends in the effects of main parameters on the interaction. A typical five-span frame building with varying rigidity was examined by using finite element numerical method under 2-D conditions. Soil below the foundation was simulated as linearly elastic or elastoplastic medium. The effects of superstructure and foundation rigidity are closely related to the effect of soil deformability thereby analyses were performed in terms of relative rigidity factors. The effects of specific foundation types, namely isolated footings, flexible and rigid mat, were investigated in detail. The conclusions were focused on the development of normalized differential settlements, on the influence of the relative rigidity factor as well as on the determination of those cases where the interaction approach is necessary to be used for the analysis.  相似文献   
6.
Immersed tunnels are particularly sensitive to tensile and compressive deformations such as those imposed by a normal seismogenic fault rupturing underneath, and those generated by the dynamic response due to seismic waves. The paper investigates the response of a future 70 m deep immersed tunnel to the consecutive action of a major normal fault rupturing in an earthquake occurring in the basement rock underneath the tunnel, and a subsequent strong excitation from a different large-magnitude seismic event that may occur years later. Non-linear finite elements model the quasi-static fault rupture propagation through the thick soil deposit overlying the bedrock and the ensuing interaction of the rupture with the immersed tunnel. It is shown that despite imposed bedrock offset of 2 m, net tension or excessive compression between tunnel segments could be avoided with a suitable design of the joint gaskets. Then, the already deformed (“injured”) structure is subjected to strong asynchronous seismic shaking. The thick-walled tunnel is modelled as a 3-D massive flexural beam connected to the soil through properly-calibrated nonlinear interaction springs and dashpots, the supports of which are subjected to the free-field acceleration time histories. The latter, obtained with 1-D wave propagation analysis, are then modified to account for wave passage effects. The joints between tunnel segments are modeled with special non-linear hyper-elastic elements, properly accounting for their 7-bar longitudinal hydrostatic pre-stressing. Sliding is captured with special gap elements. The effect of segment length and joint properties is explored parametrically. A fascinating conclusion emerges in all analysed cases for the joints between segments that were differentially deformed after the quasi-static fault rupture: upon subsequent very strong seismic shaking, overstressed joints de-compress and understressed joints re-compress—a “healing” process that leads to a more uniform deformation profile along the tunnel. This is particularly beneficial for the precariously de-compressed joint gaskets. Hence, the safety of the immersed tunnel improves with “subsequent” strong seismic shaking!  相似文献   
7.
The Holocene, which currently spans ~11 700 years, is the shortest series/epoch within the geological time scale (GTS), yet it contains a rich archive of evidence in stratigraphical contexts that are frequently continuous and often preserved at high levels of resolution. On 14 June 2018, the Executive Committee of the International Union of Geological Sciences formally ratified a proposal to subdivide the Holocene into three stages/ages, along with their equivalent subseries/subepochs, each anchored by a Global boundary Stratotype Section and Point (GSSP). The new stages are the Greenlandian (Lower/Early Holocene Subseries/Subepoch) with its GSSP in the Greenland NGRIP2 ice core and dated at 11 700 a b2k (before 2000 CE); the Northgrippian (Middle Holocene Subseries/Subepoch) with its GSSP in the Greenland NGRIP1 ice core and dated at 8236 a b2k; and the Meghalayan (Upper/Late Holocene Subseries/Subepoch) with its GSSP in a speleothem from Mawmluh Cave, north‐eastern India, with a date of 4250 a b2k. We explain the nomenclature of the new divisions, describe the procedures involved in the ratification process, designate auxiliary stratotypes to support the GSSPs and consider the implications of the subdivision for defining the Anthropocene as a new unit within the GTS.  相似文献   
8.
This integrated study (field observations, micropalaeontology, magnetostratigraphy, geochemistry, borehole data and seismic profiles) of the Messinian–Zanclean deposits on Zakynthos Island (Ionian Sea) focuses on the sedimentary succession recording the pre‐evaporitic phase of the Messinian salinity crisis (MSC) through the re‐establishment of the marine conditions in a transitional area between the eastern and the western Mediterranean. Two intervals are distinguished through the palaeoenvironmental reconstruction of the pre‐evaporitic Messinian in Kalamaki: (a) 6.45–6.122 Ma and (b) 6.122–5.97 Ma. Both the planktonic foraminifer and the fish assemblages indicate a cooling phase punctuated by hypersalinity episodes at around 6.05 Ma. Two evaporite units are recognized and associated with the tectonic evolution of the Kalamaki–Argassi area. The Primary Lower Gypsum (PLG) unit was deposited during the first MSC stage (5.971–5.60 Ma) in late‐Messinian marginal basins within the pre‐Apulian foreland basin and in the wedge‐top (<300 m) developed over the Ionian zone. During the second MSC stage (5.60–5.55 Ma), the PLG evaporites were deeply eroded in the forebulge–backbulge and the wedge‐top areas, and supplied the foreland basin's depocentre with gypsum turbidites assigned to the Resedimented Lower Gypsum (RLG) unit. In this study, we propose a simple model for the Neogene–Pliocene continental foreland‐directed migration of the Hellenide thrusting, which explains the palaeogeography of the Zakynthos basin. The diapiric movements of the Ionian Triassic evaporites regulated the configuration and the overall subsidence of the foreland basin and, therefore, the MSC expression in this area.  相似文献   
9.
10.
在很大程度上 ,危害是由地貌、地质及地球动力学等方面的原因引起的 ,而且从根本上来说 ,这些危害会影响到环境及其构型。一系列的自然现象都能引起自然灾害 (危害 )。人类对环境变化有巨大影响 ,并会导致大气圈、水圈的污染 ,而显著地损坏生物圈 ,例如大气圈、水圈、臭氧层等的破坏。更多的人为因素也会导致全球变暖及污染。许多内生的原因 ,对灾害的产生也起着重大作用。不过 ,就大多数物种在其中得以产生及演化的天然外界环境而言 ,它还有另一个值得注意的方面。环境也会影响到社会结构以及包括人类在内的生物的生活方式。可以把生命活动看成是岩石圈、大气圈、水圈及生物圈之间的一种复杂的相互作用。生命的起源 ,可以不同的看法来进行检阅。人类得以产生演化的环境 ,以及人类由综合和专业化了的器官组成的身体结构 ,已被用来与其他类似动物所具备的进行比较 ,并从广义的动物王国意义上 ,对生物间的关系做了研究和比较。对动物的行为做了研究 ,并对有关人类永生的“生命延长”概念给予了考虑。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号