首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
地球物理   2篇
地质学   16篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2012年   1篇
  2011年   3篇
  2009年   3篇
  2005年   4篇
  2004年   3篇
  1998年   1篇
排序方式: 共有18条查询结果,搜索用时 46 毫秒
1.
Characteristics of ungauged catchments can be studied from the hydrological model parameters of gauged catchments. In this research, discharge prediction was carried out in ungauged catchments using HEC-HMS in the central Omo-Gibe basin. Linear regression, spatial proximity, area ratio, and sub-basin mean were amalgamated for regionalization. The regional model parameters of the gauged catchment and physical characteristics of ungauged catchments were collated together to develop the equations to predict discharge from ungauged catchments. From the sensitivity analysis, crop coefficient (CC), storage coefficient (R), constant rate (CR), and time of concentration (TC) are found to be more sensitive than others. The model efficiency was evaluated using Nash–Sutcliffe Efficiency (NSE) which was greater than 0.75, varying between ?10% and +10% and the coefficient of determination (R2) was approximated to be 0.8 during the calibration and validation period. The model parameters in ungauged catchments were determined using the regional model (linear regression), sub-basin mean, area ratio, and spatial proximity methods, and the discharge was simulated using the HEC-HMS model. Linear regression was used in the prediction where p-value ≤ 0.1, determination coefficient (R2) = 0.91 for crop coefficient (CC) and 0.99 for maximum deficit (MD). Constant rate (CR), maximum storage (MS), initial storage (IS), storage coefficient (R), and time of concentration (TC) were obtained. The result is that an average of 30 m3/s and 15 m3/s as the maximum monthly simulated flow for ungauged sub-catchments, i.e. Denchiya and Mansa of the main river basin .  相似文献   
2.
Although earthquakes are thought to be one of the factors responsible for the occurrence of landslides in Hokkaido, there exist no enough records which can allow correlating many of the old slope failures in the island with earthquakes. In the absence of these records, an attempt was done in this study to use the abundance, frequency, magnitude, depth, and distribution of historical earthquakes to deduce that many of the slope failures in the region were triggered by strong and continuous seismicity. The determination of the zones of influences of selected earthquakes using an existing empirical function has also supported this conclusion. Moreover, the use of a 10% probability of exceedance of earthquake intensity in 50 years, and the geological and slope maps has allowed preparing a landslide hazard map which explains the role of future earthquakes in the formation of slope failures. The result indicates a high probability of occurrences of landslides in the hilly regions of the southeastern part of Hokkaido due to expected strong seismicity and earthquake intensities in these areas. On the other hand, the low level of intensity in the north has given rise to low probability of landslide hazard. There are also places in the center of the island and high intensity regions in the east where the probability of landslide hazard was influenced by the contribution of the geological and slope maps.  相似文献   
3.
A sufficient knowledge on the kinematics and development of landslides helps to adopt proper measures that can be used to protect slopes and the environment in general. This can be achieved by adequate monitoring programs. This paper presents the findings of intensive monitoring activities carried out on Shiidomari and Katanoo landslides found in Sado Island of Japan. More than one year of observation of the two landslides allowed defining some peculiar futures of their kinematics and style of development. The problem of slope instability in the two areas is generally accredited to various factors. But, both landslides were triggered by heavy rainfalls and snowmelt. Because of the outline of the area and the presence of relict topographic features, the Shiidomari landslide is considered to be a large-scale reactivation of old slope failures. The Katanoo landslide is, however, a first-time case. Geophysical investigations and drilling activities in Shiidomari indicated the presence of two slip planes. The deepest (80–100 m) of these is controlled by existing lineaments. Monitoring data suggests that the body of the landslide has subsided as much as 1.16 m just below the main scarp, but a centimeter in the central region. The toe sector also experienced a significant amount of subsidence, but this was counter-balanced by an uplift on the opposite side of the landslide. Hence, the landslide seems not any more active along the deepest slip surface, although it may extend upward and define a series of shallow shear planes around the crown. In the case of Katanoo, the landform characteristics, differential weathering, the road cut and groundwater fluctuations appeared to contribute much to determine the exact location of the landslide. Extensional cracks that preceded the landslide can be related to heavy rainfalls and the cold and warm cycles thereafter. Subsurface investigations and monitoring works indicated that the landslide has two slide blocks with different slip planes. During the observation period, the upper part of the landslide responded more effectively to rainfall and snowmelt than the middle and lower sections. The corresponding movements, however, appeared to settle about three months after failure. There were also little strain transmissions in boreholes and no significant change in the characteristics of the landslide. The kinematics of deformation of many of the slopes in Sado Island resembles that of Shiidomari landslide. But mass movements along highways and mountain roads are usually similar to Katanoo. Landslides of the type like Shiidomari may not show sudden and drastic failures, but are usually long lasting and can reactivate repeatedly along new, shallow shear planes. Monitoring works and long-term supervisions in these types of landslides are useful to identify impending failures and take the right measures before they brought about large-scale destruction to the environment.  相似文献   
4.
Peralkaline magma evolution and the tephra record in the Ethiopian Rift   总被引:3,自引:3,他引:0  
The 3.119 ± 0.010 Ma Chefe Donsa phreatomagmatic deposits on the shoulder of the Ethiopian Rift mark the northern termination of the Silti-Debre Zeyit Fault Zone, a linear zone of focused extension within the modern Ethiopian Rift. These peralkaline pumice fragments and glass shards span a wide range of glass compositions but have a restricted phenocryst assemblage dominated by unzoned sanidine. Glass shards found within the ash occupy a far more limited compositional range (75–76 wt% SiO2) in comparison with the pumice (64–75 wt% SiO2), which is rarely mingled. Thermodynamic modeling shows that liquids broadly similar to the least evolved glass composition can be achieved with 50–60 % fractionation of moderately crustally contaminated basalt. Inconsistencies between modeled solutions and the observed values of CaO and P2O5 highlight the important role of fluorine in stabilizing fluor-apatite and the limitations of current thermodynamic models largely resulting from the scarce experimental data available for the role of fluorine in igneous phase stability. On the basis of limited feldspar heterogeneity and crystal content of pumice at Chefe Donsa, and the difficulties of extracting small volumes of Si-rich melt in classical fractional crystallization models, we suggest a two-step polybaric process: (1) basaltic magma ponds at mid-upper-crustal depths and fractionates to form a crystal/magma mush. Once this mush has reached 50–60 % crystallinity, the interstitial liquid may be extracted from the rigid crystal framework. The trachytic magma extracted at this step is equivalent to the most primitive pumice analyzed at Chefe Donsa. (2) The extracted trachytic liquid will rise and continue to crystallize, generating a second mush zone from which rhyolite liquids may be extracted. Some of the compositional range observed in the Chefe Donsa deposits may result from the fresh intrusion of trachyte magma, which may also provide an eruption trigger. This model may have wider application in understanding the origin of the Daly Gap in Ethiopian magmas—intermediate liquids may not be extracted from crystal-liquid mushes due to insufficient crystallization to yield a rigid framework. The wide range of glass compositions characteristic of the proximal Chefe Donsa deposits is not recorded in temporally equivalent tephra deposits located in regional depocenters. Our results show that glass shards, which represent the material most likely transported to distal depocenters, occupy a limited compositional range at high SiO2 values and overlap some distal tephra deposits. These results suggest that distal tephra deposits may not faithfully record the potentially wide range in magma compositions present in a magmatic system just prior to eruption and that robust distal–proximal tephra correlations must include a careful analysis of the full range of materials in the proximal deposit.  相似文献   
5.
The Oligocene Ethiopian continental flood basalt province (ca. 29–31 Ma) contains significant silicic pyroclastic rocks (>60,000 km3 constituting up to 20% of the volcanic stratigraphy). Rhyolitic tephras, synchronous with the Ethiopian silicic pyroclastic rocks, are found in Indian Ocean ODP holes 711A. They are geochemically akin to the Ethiopian silicic pyroclastic rocks. This suggests that the Indian Ocean tephras originated from Ethiopian silicic eruptions and represents more distal fallout of this volcanism. The temporal coincidence of the Ethiopian flood volcanism with the Oligocene global cooling event (Oi2?~?30.3 Ma) and the emplacement of the Ethiopian silicic pyroclastic eruptions on a near-global scale strongly suggest that the Ethiopian continental flood basalt province may have contributed or at least accelerated the climate change that was already underway.  相似文献   
6.
Road construction in the Blue Nile basin is largely determined by geotechnical factors. The area is characterized by steep slopes and has a history of landsliding. The geological formations range from Mesozoic sedimentary to Tertiary volcanic rocks making the stratigraphic makeup sensitive to deformation and failure. The heterogeneity of these rocks also means it is difficult to depend on results of stability analyses alone for road design and construction. As an alternative, ratios of cut-slope lengths to cut-slope heights have been developed in this study based on the performances of unsupported natural and artificial cuts and some stability analyses. Hence, road cuts on cliffs of hard rocks need a horizontal to vertical ratio of 0.25:1. Slopes made up of weak rocks can remain stable at a threshold angle of 45°. For heterogeneous slopes, it is advisable to use different road cuts depending on material makeup, and the degree of weathering and consolidation.  相似文献   
7.
The lithospheric and sublithospheric processes associated with the transition from continental to oceanic magmatism during continental rifting are poorly understood, but may be investigated in the central Main Ethiopian Rift (MER) using Quaternary xenolith-bearing basalts. Explosive eruptions in the Debre Zeyit (Bishoftu) and Butajira regions, offset 20 km to the west of the contemporaneous main rift axis, host Al-augite, norite and lherzolite xenoliths, xenocrysts and megacrysts. Al-augite xenoliths and megacrysts derived from pressures up to 10 kb are the dominant inclusion in these recent basalts, which were generated as small degree partial melts of fertile peridotite between 15 and 25 kb. Neither the xenoliths nor the host basalts exhibit signs of carbonatitic or hydrous (amphibole + phlogopite) metasomatism, suggesting that infiltration of silicate melts resulting in pervasive Al-augite dyking/veining dominates the regional lithospheric mantle. Recent geophysical evidence has indicated that such veining/dyking is pervasive and segmented, supporting the connection of these Al-augite dykes/veins to the formation of a proto ridge axis. Al-augite xenoliths and megacrysts have been reported in other continental rift settings, suggesting that silicate melt metasomatism resulting in Al-augite dykes/veins is a fundamental processes attendant to continental rift development.  相似文献   
8.
Ground cracks in Ethiopian Rift Valley: facts and uncertainties   总被引:2,自引:0,他引:2  
No accurate relationship has been obtained in this study between ground cracks in Ethiopian Rift Valley and the most common causes of earth fissures such as aquifer-system compaction and increased horizontal seepage stresses. This is due to the fact that the level of groundwater withdrawal responsible for these processes is still negligible in Ethiopia. If aquifer-system compaction and increased horizontal seepage stresses have a certain role, then it should be through the long-term effect of groundwater flow from basins to neighboring lakes. The ground cracks appeared also not to have a direct link with active faulting or distant earthquakes. Structurally, the Ethiopian Rift Valley is dominated by NE–SW-trending tensional faults, but no evidence is obtained in this study to associate the process of surface cracking with major tectonics. However, an aseismic elastic strain, which originates at depth and propagates upward through sediments without the formation of bedrock faults, could result in conditions conducive to the development of cracks. Then, fissures might ultimately be created after heavy rainfalls by near-surface processes such as piping and hydrocompaction along water-line sources.  相似文献   
9.
Hydrogeology Journal - Drought is a temporal decrease in water availability and occurs in all climatic regions. Droughts propagate through the hydrological cycle, e.g., meteorological drought...  相似文献   
10.
The Were Ilu ignimbrites are unlike other Oligocene rhyolites from the Ethiopian continental flood basalt province, in that they consist of plagioclase (An19–54), augite, pigeonite and Ti-magnetite, instead of anorthoclase, sodic sanidine, aegirine-augite and ilmenite. The minerals occur as (micro-)phenocrysts isolated within a glassy matrix or forming gabbroic and dioritic cumulophyric clots. Plagioclase is partially re-melted (sieve-textures with infilling glass). It is zoned with sudden changes in composition. However, the bulk zoning is normal with An-rich core (An45–54) and more sodic rim (An19–28). Ba and Sr concentration profiles of two plagioclase phenocrysts show a bulk rimward increase with compositions ranging from 250 ppm to 1,060 ppm and from 400 ppm to 1,590 ppm, respectively. The matrix glass has low CaO content (0.1–0.5 wt.%), a peralkalinity index of 0.79–1.04 and average Sr and Ba contents of 48±22 and 525±129 ppm, respectively. Geochemical modelling of Ba and Sr zoning profiles of plagioclase, based on experimental constraints, suggests that the cumulophyric clots can be derived from fractional crystallisation associated with limited assimilation (8 wt.%) from melts slightly less evolved than their rhyolitic matrix glass. These clots are not witnesses of intermediate magmas allowing the Daly Gap to be filled, but are cumulates differentiated from rhyodacitic melt. This indicates that parental magmas were stored in crustal magma chambers where they differentiated before being erupted at the surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号