首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
大气科学   1篇
地球物理   7篇
地质学   15篇
海洋学   1篇
自然地理   1篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有25条查询结果,搜索用时 718 毫秒
1.
The objective of this work is to document the deformation pattern of the deep-seated La Clapière landslide for the period 2007–2010 from the combination of L-band synthetic aperture radar (SAR) interferograms, ground-based total station measurements and identification of the slope geomorphological structures. The interferograms are calculated for pairs of ALOS/PALSAR images at a time interval of 46 days. The displacement field derived from the interferograms reveals a non-uniform displacement gradient from the top (subsidence) to the bottom (accumulation). Vertical velocities are calculated from the unwrapped phase values and are in good agreement with ground-based measurements. The results demonstrate the potential of L-band ALOS/PALSAR imagery for the monitoring of active landslides characterized by complex kinematic patterns and by important changes in the soil surface backscattering in time.  相似文献   
2.
A high‐resolution sedimentological and geochemical study of a high‐altitude proglacial lake (Lake Blanc, Aiguilles Rouges, 2352 m a.s.l.) revealed 195 turbidites, 190 of which are related to flood events over the last 1400 years. We used the coarsest sediment fraction of each turbidite as a proxy for the intensity of each flood event. Because most flood events at this locality are triggered by localized summer convective precipitation events, the reconstructed sedimentary record reveals changes in the frequency and intensity of such events over the last millennium. Comparisons with other temperature, palaeohydrological and glacier reconstructions in the region suggest that the most intense events occurred during the warmest periods, i.e. during the Medieval Climate Anomaly (AD 800–1300) and the current period of global warming. On a multi‐decadal time scale, almost all the flood frequency peaks seem to correspond to warmer periods, whereas multi‐centennial variations in flood frequency appear to follow the regional precipitation pattern. Consequently, this new Alpine flood record provides further evidence of a link between climate warming and an increase in the frequency and intensity of flooding on a multi‐decadal time scale, whereas the centennial variability in flood frequencies is related to regional precipitation patterns. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
Hydrogeology Journal - Monitoring of dissolved methane concentrations in groundwater is required to identify impacts from oil and gas development and to understand temporal variability under...  相似文献   
4.
In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long-term control on rockfall occurrence, a selection of paleo-rockfall scars was dated in the Glacier du Géant basin [>3200 m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall occurrence was compared to different climatic and glacial proxies. This study presents 55 new samples (including replicates) and 25 previously-published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02 ka to 88.40 ± 7.60 ka. Holocene ages and their uncertainties were used to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100 years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7 ka, related to the Holocene Warm Periods; (ii) c. 4.5–4 ka, related to the Sub-boreal Warm Period; (iii) c. 2.3–1.6 ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3 ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetric three-dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best-preserved rockfall scars (≤0.91 ± 0.12 ka). A structural study was carried out at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened-up during long-term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and the rock wall scales, control the rock-wall shapes as well as the geometry and volume of the rockfall events. © 2020 John Wiley & Sons, Ltd.  相似文献   
5.
Tier-based approaches for landslide susceptibility assessment in Europe   总被引:3,自引:2,他引:1  
In the framework of the European Soil Thematic Strategy and the associated proposal of a Framework Directive on the protection and sustainable use of soil, landslides were recognised as a soil threat requiring specific strategies for priority area identification, spatial hazard assessment and management. This contribution outlines the general specifications for nested, Tier-based geographical landslide zonings at small spatial scales to identify priority areas susceptible to landslides (Tier 1) and to perform quantitative susceptibility evaluations within these (Tier 2). A heuristic, synoptic-scale Tier 1 assessment exploiting a reduced set of geoenvironmental factors derived from common pan-European data sources is proposed for the European Union and adjacent countries. Evaluation of the susceptibility estimate with national-level landslide inventory data suggests that a zonation of Europe according to, e.g. morphology and climate, and performing separate susceptibility assessments per zone could give more reliable results. To improve the Tier 1 assessment, a geomorphological terrain zoning and landslide typology differentiation are then applied for France. A multivariate landslide susceptibility assessment using additional information on landslide conditioning and triggering factors, together with a historical catalogue of landslides, is proposed for Tier 2 analysis. An approach is tested for priority areas in Italy using small administrative mapping units, allowing for relating socioeconomic census data with landslide susceptibility, which is mandatory for decision making regarding the adoption of landslide prevention and mitigation measures. The paper concludes with recommendations on further work to harmonise European landslide susceptibility assessments in the context of the European Soil Thematic Strategy.  相似文献   
6.
Identification of debris‐flow hazard areas necessitates the knowledge of the flow thickness and the runout distance. Both have been investigated using a numerical runout model. On the Faucon stream (South French Alps), representative of clay‐shale basins, results of various rheological tests and numerical experiments are presented and discussed. The calibration of the model was undertaken using the results of both geomorphological surveys and sedimentological analyses. Rheological tests using either a parallel‐plate rheometer, a coaxial rheometer, slump tests, and an inclined plane were carried out on several samples. Results have shown that the flow behaviour could be described by an Herschel‐Bulkley constitutive equation. The rheological responses of several natural suspensions collected from surficial deposits (sandstones, moraines, weathered black marls) were also investigated. In order to model the runout of the flow, the model BING was used. The model describes well the influence of each type of sediment on the behaviour (runout distance, deposit thickness) of the flow, although the velocities were significantly overestimated. Different risk scenarios are tested and discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
7.
Geomorphologists have to make choices and compromises, as acquisition techniques of geometrical information are numerous, depending on the specific complexity of the targeted three‐dimensional objects and the requirements of the end user. This article presents the methodology and the results over a well known and documented site. This ready‐to‐use, low‐altitude, aerial photo methodology reveals itself to be a satisfying compromise between cost, accuracy and difficulty of implementation. The selected equipment package is light enough to enable a quick reaction to unexpected events and the tools and methods are competitive with field acquisition techniques. An evaluation has demonstrated a sub‐metric accuracy for the final result. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
8.
The Super‐Sauze mudslide is a persistently active slow‐moving landslide occurring in the black marl outcrops of the French South Alps. It has been intensively studied since the early 1990s. Geotechnical, geomorphological, geophysical and hydrological investigations have led to a better understanding of the processes governing the landslide motion. Water ?ows inside the system have been proven to have a major impact. To look closer at the processes involved and especially to gain a better idea of the origin and pathways of the waters, a hydrochemical study was carried out from May 2003 to May 2004. The groundwater was sampled during ?ve ?eld campaigns spread uniformly over the year. Groundwater from a network of boreholes was collected as well as spring waters from the fractured bedrock (in situ black marl) and from the moraine aquifer above the landslide. Results showed that the groundwater chemistry could not be fully explained by rainfall recharge or simple water–matrix equilibrium. A contribution of saline waters coming from the bottom of a thrust sheet overhanging the landslide was required to get the observed high mineralization. On a ?ow line, the hydrochemical evolution was related to both soil–matrix equilibrium and deep water sources coming up to the surface by means of major faults, the bedding planes and the schistosity. Hydrochemical anomalies made it possible to point out such contributions locally. It was shown that water chemistry and landslide activity were closely related. This hydrochemical investigation also enabled us to better de?ne the hydrosystem limits.Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
9.
10.
Seismic and electrical resistivity tomography allow subsurface characterization from acoustic P-waves (Vp), shear S-waves (Vs) velocities, and electrical resistivity (ρ). Both geophysical methods were used to monitor water flow during a controlled rainfall experiment on a clay-shale hillslope located in the Laval catchment at Draix (Alpes-de-Haute-Provence, France). The objectives of the rainfall experiment were to analyse the water infiltration processes and identify possible water pathways by combining multi-method observations. The seismic data provide information on fissure density and the electrical resistivity data provide information on soil water content within the hillslope. Changes of the Vp and electrical resistivity fields with time show some similar pattern. To go further in the analysis of the water flow a geophysical data fusion strategy based on fuzzy set theory is applied. The computed fuzzy cross-sections based on expert hypotheses show the possibility for the material to be saturated during the rainfall experiment. The data fusion process is repeated in time for each acquisition set. The relative difference between the obtained fuzzy cross-sections is calculated and reveals possible locations where water may be transferred within the hillslope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号