首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   17篇
  国内免费   1篇
测绘学   29篇
大气科学   45篇
地球物理   96篇
地质学   144篇
海洋学   16篇
天文学   31篇
综合类   1篇
自然地理   12篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   10篇
  2017年   18篇
  2016年   22篇
  2015年   10篇
  2014年   9篇
  2013年   39篇
  2012年   12篇
  2011年   20篇
  2010年   28篇
  2009年   19篇
  2008年   10篇
  2007年   15篇
  2006年   14篇
  2005年   11篇
  2004年   6篇
  2003年   12篇
  2002年   7篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   3篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1979年   2篇
  1976年   4篇
  1969年   3篇
  1963年   2篇
  1961年   2篇
  1959年   2篇
  1958年   5篇
  1955年   4篇
  1954年   6篇
  1952年   4篇
  1951年   2篇
  1950年   2篇
  1949年   1篇
  1948年   3篇
  1921年   2篇
  1920年   1篇
  1915年   1篇
排序方式: 共有374条查询结果,搜索用时 875 毫秒
1.
Very high-frequency marine multichannel seismic reflection data generated by small-volume air- or waterguns allow detailed, high-resolution studies of sedimentary structures of the order of one to few metres wavelength. The high-frequency content, however, requires (1) a very exact knowledge of the source and receiver positions, and (2) the development of data processing methods which take this exact geometry into account. Static corrections are crucial for the quality of very high-frequency stacked data because static shifts caused by variations of the source and streamer depths are of the order of half to one dominant wavelength, so that they can lead to destructive interference during stacking of CDP sorted traces. As common surface-consistent residual static correction methods developed for land seismic data require fixed shot and receiver locations two simple and fast techniques have been developed for marine seismic data with moving sources and receivers to correct such static shifts. The first method – called CDP static correction method – is based on a simultaneous recording of Parasound sediment echosounder and multichannel seismic reflection data. It compares the depth information derived from the first arrivals of both data sets to calculate static correction time shifts for each seismic channel relative to the Parasound water depths. The second method – called average static correction method – utilises the fact that the streamer depth is mainly controlled by bird units, which keep the streamer in a predefined depth at certain increments but do not prevent the streamer from being slightly buoyant in-between. In case of calm weather conditions these streamer bendings mainly contribute to the overall static time shifts, whereas depth variations of the source are negligible. Hence, mean static correction time shifts are calculated for each channel by averaging the depth values determined at each geophone group position for several subsequent shots. Application of both methods to data of a high-resolution seismic survey of channel-levee systems on the Bengal Fan shows that the quality of the stacked section can be improved significantly compared to stacking results achieved without preceding static corrections. The optimised records show sedimentary features in great detail, that are not visible without static corrections. Limitations only result from the sea floor topography. The CDP static correction method generally provides more coherent reflections than the average static correction method but can only be applied in areas with rather flat sea floor, where no diffraction hyperbolae occur. In contrast, the average static correction method can also be used in regions with rough morphology, but the coherency of reflections is slightly reduced compared to the results of the CDP static correction method.  相似文献   
2.
3.
The Wattkopftunnel, near Ettlingen (Nordschwarzwald), drives through the eastern margin of the Rheingraben. The tunnel passes cenozoic and mesozoic sediments. Early quarternary and tertiary beds are situated west of the main thrust of the Rheingraben. Fossil record indicates upper Oligocene age (Chatt) for parts of the tertiary sediments. At the eastern border of the Rheingraben, wedges of jurassic and middle triassic series are squeezed. East of the Rheingraben the tunnel drives in the lower triassic Bausandstein. The eastern margin of the Rheingraben was investigated in detail during tunneling. Faults of the Rheingraben margin are distributed in an 130 meter wide fault zone in the tunnel. Total stratigraphic separation by the normal faults reaches more than 2 000 meters. The cenozoic sequence suffered synsedimentary to early diagenetic deformation, while the mesozoic series are characterized by ruptural deformation. The fault- and joint system is directed in the rheinische Richtung (SSW-NNE). East of the Rheingraben a second direction occur, running parallel to the lower Albtal (W-E).
  相似文献   
4.
Seawater is constantly circulating through oceanic basement as a low-temperature hydrothermal fluid (<150°C). In cases when ultramafic rocks are exposed to the fluids, for instance during the initial phase of subduction, ferromagnesian minerals are altered in contact with the water, leading to high pH and formation of secondary magnesium hydroxide, among other – brucite, that may scavenge borate and phosphate from seawater. The high pH may promote abiotic formation of pentoses, particularly ribose. Pentoses are stabilized by borate, since cyclic pentoses form a less reactive complex with borate. Analyses have shown that borate occupies the 2' and 3' positions of ribose, thus leaving the 5' position available for reactions like phosphorylation. The purine coding elements (adenine, in particular) of RNA may be formed in the same general hydrothermal environments of the seafloor.  相似文献   
5.
In this study, hydrogeologic and hydrochemical information from the Mersin-Erdemli groundwater system were integrated and used to determine the main factors and mechanisms controlling the chemistry of groundwaters in the area and anthropogenic factors presently affecting them. The PHREEQC geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into four categories: (1) silicate weathering reactions; (2) dissolution of salts; (3) precipitation of calcite, amorphous silica and kaolinite; (4) ion exchange. As determined by multivariate statistical analysis, anthropogenic factors show seasonality in the area where most contaminated waters related to fertilizer and fungicide applications that occur during early summer season.  相似文献   
6.
Geochemical processes occurring in cold environments on Earth, Mars, and Europa have elicited considerable interest in the application of geochemical models to subzero temperatures. Few existing geochemical models explicitly include acid chemistry and those that do are largely restricted to temperatures ≥0°C or rely on the mole-fraction scale rather than the more common molal scale. This paper describes (1) use of the Clegg mole-fraction acid models to develop a molal-based model for hydrochloric, nitric, and sulfuric acids at low temperatures; (2) incorporation of acid chemistry and nitrate minerals into the FREZCHEM model; (3) validation and limitations of the derived acid model; and (4) simulation of hypothetical acidic brines for Europa.The Clegg mole-fraction acid models were used to estimate activities of water and mean ionic activity coefficients that serve as the database for estimating molal Pitzer-equation parameters for HCl (188 to 298 K), HNO3 (228 to 298 K), and H2SO4 (208 to 298 K). Model eutectics for HNO3 and H2SO4 agree with experimental measurements to within ± 0.2°C. In agreement with previous work, the experimental freezing point depression (fpd) data for pure HCl at subzero temperatures were judged to be flawed and unreliable. Three alternatives are discussed for handling HCl chemistry at subzero temperatures. In addition to defining the solubility of solid-phase acids, this work also adds three new nitrate minerals and six new acid salts to the FREZCHEM model and refines equilibria among water ice, liquid water, and water vapor over the temperature range from 180 to 298 K. The final system is parameterized for Na-K-Mg-Ca-H-Cl-SO4-NO3-OH-HCO3-CO3-CO2-H2O.Simulations of hypothetical MgSO4-H2SO4-H2O and Na2SO4-MgSO4-H2SO4-H2O brines for Europa demonstrate how freezing can convert a predominantly salt solution into a predominantly acid solution at subzero temperatures. This result has consequences for the effects of salinity, acidity, and temperature as limiting factors for potential life on Europa. Strong acidity would limit life-forms to highly acidophilic organisms.  相似文献   
7.
Freshwater and marine ecosystems are exposed to various multi-component mixtures of pollutants. Nevertheless, most ecotoxicological research and chemicals regulation focus on hazard and exposure assessment of individual substances only, the problem of chemical mixtures in the environment is ignored to a large extent. In contrast, the assessment of combination effects has a long tradition in pharmacology, where mixtures of chemicals are specifically designed to develop new products, e.g. human and veterinary drugs or agricultural and non-agricultural pesticides. In this area, two concepts are frequently used and are thought to describe fundamental relationships between single substance and mixture effects: Independent Action (Response Addition) and Concentration Addition. The question, to what extent these concepts may also be applied in an ecotoxicological and regulatory context may be considered a research topic of major importance, as the concepts would allow to make use of already existing single substance toxicity data for the predictive assessment of mixture toxicities. Two critical knowledge gaps are identified: (a) There is a lack of environmental realism, as a huge part of our current knowledge about the applicability of the concepts is restricted to artificial situations with respect to mixture composition or biological effect assessment. (b) The knowledge on what exactly is needed for using the concepts as tools for the predictive mixture toxicity assessment is insufficient. Both gaps seriously hamper the necessary, scientifically sound consideration of mixture toxicities in a regulatory context.In this paper, the two concepts will be briefly introduced, the necessity of considering the toxicities of chemical mixtures in the environment will be demonstrated and the applicability of Independent Action and Concentration Addition as tools for the prediction and assessment of mixture toxicities will be discussed. An overview of the specific aims and approaches of the BEAM project to fill in the identified knowledge gaps is given and first results are outlined.  相似文献   
8.
Electrical, seismic, and electromagnetic methods can be used for noninvasive determination of subsurface physical and chemical properties. In particular, we consider the evaluation of water salinity and the detection of surface contaminants. Most of the relevant properties are represented by electric conductivity, P-wave velocity, and dielectric permittivity. Hence, it is important to obtain relationships between these measurable physical quantities and soil composition, saturation, and frequency. Conductivity in the geoelectric frequency range is obtained with Pride's model for a porous rock. (The model considers salinity and permeability.) White's model of patchy saturation is used to calculate the P-wave velocity and attenuation. Four cases are considered: light nonaqueous phase liquid (LNAPL) pockets in water, dense nonaqueous phase liquid (DNAPL) pockets in water, LNAPL pockets in air, and DNAPL pockets in air. The size of the pockets (or pools), with respect to the signal wavelength, is modeled by the theory. The electromagnetic properties in the GPR frequency range are obtained by using the Hanai–Bruggeman equation for two solids (sand and clay grains) and two fluids (LNAPL or DNAPL in water or air). The Hanai–Bruggeman exponent (1/3 for spherical particles) is used as a fitting parameter and evaluated for a sand/clay mixture saturated with water.Pride's model predicts increasing conductivity for increasing salinity and decreasing permeability. The best-fit exponent of the Hanai–Bruggeman equation for a sand/clay mixture saturated with water is 0.61, indicating that the shape of the grains has a significant influence on the electromagnetic properties. At radar frequencies, it is possible to distinguish between a water-saturated medium and a NAPL-saturated medium, but LNAPL- and DNAPL-saturated media have very similar electromagnetic properties. The type of contaminant can be better distinguished from the acoustic properties. P-wave velocity increases with frequency, and has dissimilar behaviour for wet and dry soils.  相似文献   
9.
10.
We estimate the concentration of gas hydrate and free gas at an area located to the north of the Knipovich Ridge (western Svalbard margin). The method is based on P-wave velocities computed by reflection tomography applied to multicomponent ocean-bottom seismometer data. The tomographic velocity field is fitted to theoretical velocities obtained from a poro-elastic model based on a Biot-type approach (the interaction between the rock frame, gas hydrate and fluid is modelled from first physical principles). We obtain average hydrate concentrations of 7% and maximum free-gas saturations of 0.4% and 9%, depending on the saturation model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号