首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2883篇
  免费   154篇
  国内免费   31篇
测绘学   52篇
大气科学   255篇
地球物理   743篇
地质学   1031篇
海洋学   231篇
天文学   525篇
综合类   8篇
自然地理   223篇
  2022年   24篇
  2021年   53篇
  2020年   59篇
  2019年   54篇
  2018年   108篇
  2017年   73篇
  2016年   114篇
  2015年   73篇
  2014年   103篇
  2013年   158篇
  2012年   117篇
  2011年   150篇
  2010年   117篇
  2009年   172篇
  2008年   158篇
  2007年   163篇
  2006年   135篇
  2005年   101篇
  2004年   94篇
  2003年   82篇
  2002年   73篇
  2001年   53篇
  2000年   42篇
  1999年   41篇
  1998年   37篇
  1997年   23篇
  1996年   45篇
  1995年   25篇
  1994年   27篇
  1993年   27篇
  1992年   18篇
  1991年   18篇
  1990年   15篇
  1989年   12篇
  1988年   20篇
  1987年   20篇
  1986年   19篇
  1985年   35篇
  1984年   25篇
  1983年   38篇
  1982年   39篇
  1981年   33篇
  1980年   23篇
  1979年   38篇
  1978年   33篇
  1977年   19篇
  1976年   23篇
  1975年   22篇
  1974年   26篇
  1973年   30篇
排序方式: 共有3068条查询结果,搜索用时 15 毫秒
1.
During the Second World War, the Allied invasion of the French coast of Normandy on D‐Day, 6 June 1944, was the greatest amphibious assault in world history. An article in Geology Today (v.11, for 1995, pp.58–63) marked the 50th anniversary of the end of the war in Europe, on 8 May 1945, by describing how British military geologists had participated in planning for D‐Day and in the NW Europe campaign that followed it. The work of these geologists provides a classic case history, revealing that ‘military geology’ has many potential applications. Geological factors influenced site selection for temporary airfields, predictions of trafficability for the Normandy beaches, the development of potable water supplies, and quarrying for road metal—and more besides. This new article helps to mark the 75th anniversary of D‐Day by further details of how geologists and geology contributed to Allied victory.  相似文献   
2.
3.
4.
Abstract— Cosmic dust accreted by the Earth can be extensively reprocessed during atmospheric encounters. The textures and compositions of reprocessed material provide important constraints by which the processes affecting extraterrestrial matter in the Earth's atmosphere can be better understood. Here we report results on an unusual Antarctic glassy cosmic spherule that demonstrates strong textural evidence for at least two grazing incidence encounters with the Earth's atmosphere prior to final reentry. The particle consists of a central glassy core with four peripheral glass lobes that transect a silicate particle rim. The texture of the particle confirms previous theoretical speculations that some high velocity, low incidence angle interplanetary particles experience numerous encounters with the Earth's atmosphere and also indicates that micrometeorites demonstrating multiple melting episodes should be interpreted with caution.  相似文献   
5.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   
6.
Using statistical orbital ranging, we systematically study the orbit computation problem for transneptunian objects (TNOs). We have automated orbit computation for large numbers of objects, and, more importantly, we are able to obtain orbits even for the most sparsely observed objects (observational arcs of a few days). For such objects, the resulting orbit distributions include a large number of high-eccentricity orbits, in which TNOs can be perturbed by close encounters with Neptune. The stability of bodies on the computed orbits has therefore been ascertained by performing a study of close encounters with the major planets. We classify TNO orbit distributions statistically, and we study the evolution of their ephemeris uncertainties. We find that the orbital element distributions for the most numerous single-apparition TNOs do not support the existence of a postulated sharp edge to the belt beyond 50 AU. The technique of statistical ranging provides ephemeris predictions more generally than previously possible also for poorly observed TNOs.  相似文献   
7.
When viewed from the air, Scottish ‘hummocky moraine’ can be resolved into a series of linear ridges that resemble those found at the margins of actively retreating glaciers today. Recent work has supported the interpretation of these linear ridges as ice-marginal landforms and the authors believe that the majority of ‘hummocky moraine’ deposits can be interpreted in this way. Consequently the pattern of deglaciation can be established fairly precisely from the pattern of linear ridges. This approach is applied to the landforms of the northern part of the Loch Lomond Stadial ice-field in order to reconstruct the regional pattern of deglaciation. This leads to important inferences about the significance of topographic control during deglaciation and more importantly it provides fresh insight into the environment of the British Isles during the Loch Lomond Stadial.  相似文献   
8.
9.
Abstract— Primary minerals in calcium‐aluminum‐rich inclusions (CAIs), Al‐rich and ferromagnesian chondrules in each chondrite group have δ18O values that typically range from ?50 to +5%0. Neglecting effects due to minor mass fractionations, the oxygen isotopic data for each chondrite group and for micrometeorites define lines on the three‐isotope plot with slopes of 1.01 ± 0.06 and intercepts of ?2 ± 1. This suggests that the same kind of nebular process produced the 16O variations among chondrules and CAIs in all groups. Chemical and isotopic properties of some CAIs and chondrules strongly suggest that they formed from solar nebula condensates. This is incompatible with the existing two‐component model for oxygen isotopes in which chondrules and CAIs were derived from heated and melted 16O‐rich presolar dust that exchanged oxygen with 16O‐poor nebular gas. Some FUN CAIs (inclusions with isotope anomalies due to fractionation and unknown nuclear effects) have chemical and isotopic compositions indicating they are evaporative residues of presolar material, which is incompatible with 16O fractionation during mass‐independent gas phase reactions in the solar nebula. There is only one plausible reason why solar nebula condensates and evaporative residues of presolar materials are both enriched in 16O. Condensation must have occurred in a nebular region where the oxygen was largely derived from evaporated 16O‐rich dust. A simple model suggests that dust was enriched (or gas was depleted) relative to cosmic proportions by factors of ~10 to >50 prior to condensation for most CAIs and factors of 1–5 for chondrule precursor material. We infer that dust‐gas fractionation prior to evaporation and condensation was more important in establishing the oxygen isotopic composition of CAIs and chondrules than any subsequent exchange with nebular gases. Dust‐gas fractionation may have occurred near the inner edge of the disk where nebular gases accreted into the protosun and Shu and colleagues suggest that CAIs formed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号