首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   4篇
测绘学   2篇
大气科学   16篇
地球物理   38篇
地质学   59篇
海洋学   6篇
天文学   31篇
自然地理   14篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   10篇
  2016年   2篇
  2015年   6篇
  2014年   8篇
  2013年   11篇
  2012年   4篇
  2011年   13篇
  2010年   8篇
  2009年   10篇
  2008年   3篇
  2007年   10篇
  2006年   6篇
  2005年   8篇
  2004年   4篇
  2003年   9篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1996年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1980年   1篇
  1958年   1篇
排序方式: 共有166条查询结果,搜索用时 115 毫秒
1.
The 5-dimensional Jordan-Brans-Dicke cosmologies in vacuum are found for the Bianchi type I metric, their relation with general relativity cosmologies is studied. Two solutions are possible, both produce effective pressure and energy density in the 4-dimensional G.R.-universes. One is a power-law relation, with two cases, the first one is forp eff=eff and the other forp eff=eff(– 1 < < 1) has a behaviour as the open flat universe. The second solution is an exponential only valid forp eff=–eff. In all cases the three-space expansion reaches infinity ast and the fifth dimension can be made to decrease approaching zero. The scalar field can increase or decrease with time.  相似文献   
2.
The oceanographic setting and the planktonic distribution in the coastal transition zone off Concepción (∼35-38°S, ∼73-77°W), an area characterized by its high biological production, were assessed during two different seasons: austral spring with equatorward upwelling favorable winds and austral winter with predominately northerly winds. Oceanographic and biological data (total chlorophyll-a, particulate organic carbon, microplankton, large mesozooplankton >500 μm as potential consumers of microplankton) were obtained during two cruises (October 1998, July 1999) together with satellite imagery for wind stress, geostrophic flow, surface temperature, and chlorophyll-a data. The physical environment during the spring sampling was typical of the upwelling period in this region, with a well-defined density front in the shelf-break area and high concentrations of surface chlorophyll-a (>5 mg m−3) on the shelf over the Itata terrace. During the winter sampling, highly variable though weakly upwelling-favorable winds were observed along with lower surface chlorophyll-a values (<2 mg m−3) on the shelf. In the oceanic area (>100 km from the coast), cyclonic and anti-cyclonic eddies were evident in the flow field during both periods, the former coinciding with higher chlorophyll-a contents (∼1 mg m−3) than in the surrounding waters. Also, a cold, chlorophyll-a rich filament was well defined during the spring sampling, extending from the shelf out to 350-400 km offshore. Along a cross-shelf transect, the micro- and meso-planktonic assemblages displayed higher coastal abundances during the spring cruise but secondary peaks appeared in the oceanic area during the winter cruise, coinciding with the distribution of the eddies. These results suggest that the mesoscale features in this region, in combination with upwelling, play a role in potentially increasing the biological productivity of the coastal transition zone off Concepción.  相似文献   
3.
Second-order moment advection scheme applied to Arctic Ocean simulation   总被引:2,自引:0,他引:2  
We apply the second-order moment (SOM) advection scheme of (Prather, M.J. 1986. Numerical advection by conservation of second-order moments. J. Geophys. Res. 91, 6671–6681.) to the simulation of the large-scale circulation of the Arctic Ocean with a coupled ocean–sea-ice model. Compared to three other advection schemes commonly employed in ocean simulations (centred differences, flux corrected transport, and multidimensional positive definite advection transport), the SOM method helps preserve the vertical structure of Arctic water masses. The depth, thickness and hydrographic properties of the Arctic Surface Water and the Arctic Atlantic Layer are better represented with SOM than with any of the other three advection algorithms. We also present a convenient method for calculating the implicit numerical diffusivity of upstream based schemes, such as the SOM method, and discuss three approaches for improving the monotonicity properties of the SOM algorithm.  相似文献   
4.
The structure and functioning of nanoplanktonic assemblages in coastal upwelling areas have usually been overlooked in explorations of the productivity of these areas. As part of a multidisciplinary, time-series station in the coastal area off Concepción, seasonal variations (upwelling and non-upwelling) in the abundance and biomass of these assemblages were investigated. Hydrographic measurements and biological samples were taken monthly over a 2-year period (18 August 2004-28 July 2006). Nanoflagellates dominated the total integrated abundance (3-317 × 109 cells m−2; 0-80 m). Diatoms and dinoflagellates usually contributed to a lesser degree (<20%) but sporadically made important contributions to the total integrated nanoplankton biomass (0.02-10.6 g C m−2). Most of the nanoplankton was concentrated in surface waters (<30 m) during all the samplings and no seasonal differences in abundance or biomass were found in this layer, although the mean values and dispersions around them were highest during the upwelling period along with maximum integrated (0-80 m) chlorophyll-a values, as total or in the <20 μm fraction. Changes in nanoplankton abundance were significantly but weakly (r < 0.4) correlated with changes in the hydrographic variables; the highest correlation values were positive for temperature and oxygen, factors that varied with depth and date. The potential grazing rates of heterotrophic nano-predators (flagellates and dinoflagellates) on prokaryotic prey, estimated with a generic model, ranged from 3 to 242 bacterioplankton predator−1 h−1 and from 0.1 to 14 cyanobacteria predator−1 h−1. Our results imply a small impact of seasonal hydrographic variability on the abundance and biomass of nanoplanktonic assemblages and suggest that grazing by nanoheterotrophs might control the prokaryotic picoplankton populations in the upwelling area off Concepción.  相似文献   
5.
Homogeneous single crystals of synthetic monticellite with the composition \({\text{Ca}}_{0.88}{\text{Mg}}_{1.12}{\text{SiO}}_4\) (Mtc I) were annealed in a piston-cylinder apparatus at temperatures between 1000 and \(1200\,^{\circ }\hbox {C}\), pressures of 1.0–1.4 GPa, for run durations from 10 min to 24 h and applying bulk water contents ranging from 0.0 to 0.5 wt% of the total charge. At these conditions, Mtc I breaks down to a fine-grained, symplectic intergrowth. Thereby, two types of symplectites are produced: a first symplectite type (Sy I) is represented by an aggregate of rod-shaped forsterite immersed in a matrix of monticellite with end-member composition (Mtc II), and a second symplectite type (Sy II) takes the form of a lamellar merwinite–forsterite intergrowth. Both symplectites may form simultaneously, where the formation of Sy I is favoured by the presence of water. Sy I is metastable with respect to Sy II and is successively replaced by the latter. For both symplectite types, the characteristic spacing of the symplectite phases is independent of run duration and is only weeakly influenced by the water content, but it is strongly temperature dependent. It varies from about 400 nm at \(1000\,^{\circ }\hbox {C}\) to 1200 nm at \(1100\,^{\circ }\hbox {C}\) in Sy I, and from 300 nm at \(1000\,^{\circ }\hbox {C}\) to 700 nm at \(1200\,^{\circ }\hbox {C}\) in Sy II. A thermodynamic analysis reveals that the temperature dependence of the characteristic spacing of the symplectite phases is due to a relatively high activation energy for chemical segregation by diffusion within the reaction front as compared to the activation energy for interface reactions at the reaction front. The temperature dependence of the characteristic lamellar spacing and the temperature-time dependence of overall reaction progress have potential for applications in geo-thermometry and geo-speedometry.  相似文献   
6.
7.
Arenal Volcano has effused basaltic andesite lava flows nearly continuously since September, 1968. The two different kinds of material in flows, lava and lava debris, have different rheologic properties and dynamic behavior. Flow morphology depends on the relationship between the amount and distribution of the lava and the debris, and to a lesser extent the ground morphology.Two main units characterize the flows: the channel zone and the frontal zone. The channel zone consists of two different units, the levées and the channel proper. A velocity profile in the channel shows a maximum value at the plug where the rate of shear is zero, and a velocity gradient increasing outward until, at the levées, the velocity becomes zero. Cooling produces a marked temperature gradient in the flow, leading to the formation of debris by brittle fracture when a critical value of shear rate to viscosity is reached. When the lava supply ceases, much of this debris and part of the lava is left behind after the flow nucleus drains out, forming a collapsed channel.Processes at the frontal zone include levée formation, debris formation, the change in shape of the front, and the choice of the flow path. These processes are controlled primarily by the rheological properties of the lava.Frontal zone dynamics can be understood by fixing the flow front as the point of reference. The lava flows through the channel into the front where it flows out into the levées, thereby increasing the length of the channel and permitting the front to advance. The front shows a relationship of critical height to the yield strength (τ0) surface tension, and slope; its continued movement is activated by the pressure of the advancing lava in the channel behind. For an ideal flow (isothermal, homogeneous, and isotropic) the ratio of the section of channel proper to the section of levées is calculated and the distance the front will have moved at any time tx can be determined once the amount of lava available to the front is known. Assuming that the velocity function of the front {G(t)} during the collapsing stage is proportional to the entrance pressure of the lava at the channel-front boundary, an exponential decrease of velocity through time is predicted, which shows good agreement with actual frontal velocity measurements taken on two flows. Local variations in slope have a secondary effect on frontal velocities.Under conditions of constant volume the frontal zone can be considered as a machine that consumes energy brought in by the lava to perform work (front advancement). While the front will use its potential energy to run the process, the velocity at which it occurs is controlled by the activation energy that enters the system as the kinetic energy of the lava flowing into the front. A relation for the energy contribution due to frontal acceleration is also derived. Finally the entrance pressure, that permits the front to deform, is calculated. Its small value confirms that the lava behaves very much like a Bingham plastic.  相似文献   
8.
Cooling rate (CR) effects on the intensity of thermoremanent magnetization has been documented for archaeomagnetic materials, where cooling in laboratory conditions is generally much faster compared to natural cooling rates. Since the latter condition also applies to many volcanic rocks, we have investigated in this study the influences of the CR on the determination of absolute paleointensity using recent basaltic rocks. We used magnetically and thermally stable samples mainly containing Ti-poor pseudo-singledomain titanomagnetites (the most widely used material for Thellier paleointensity experiments). These samples previously succeed in retrieving the strength of laboratory field intensities with the Coe’s version of the Thellier method in a simulated paleointensity experiment using similar cooling rates. Our experimental results indicate that the cooling rate effects produce systematic and significant overestimates of the absolute intensity up to 70%. The effect can be much larger than predicted by Neél theory for non-interacting single-domain grains.  相似文献   
9.
10.
Measurements of the sulfur dioxide (SO2) emission rate from three Guatemalan volcanoes provide data which are consistent with theoretical and laboratory studies of eruptive and shallow magma chamber processes. In particular, unerupted magma makes a major contribution to the measured SO2 emission rates at Santiaguito, a continuously erupting dacitic volcanic dome. Varying shallow magma convection rates can explain the variations in SO2 emission rates at Santiaguito. At Fuego, a basaltic volcano currently in repose, SO2 emission rate measurements are consistent with a high level magma body that is crystallizing and releasing volatiles. At Pacaya, a continuously erupting basaltic volcano, recent SO2 emission rate measurements support laboratory simulation studies of strombolian eruptions; these studies indicate that the majority of gas escapes during eruptions and little gas escapes between eruptions.Average SO2 emission rates over the last 20 years for Santiaguito, Fuego and Pacaya are 80, 160 and 260 Mg/d, respectively. On a global scale, these three volcanoes account for 1% of the annual global volcanic output of SO2. Santiaguito and Pacaya, together, emit 6% of the total annual SO2 emitted by continuously erupting volcanoes.Even though SO2 measurements at these volcanoes have been made infrequently and by different investigators, the collective data help to establish a useful baseline by which to judge future changes. A more complete record of SO2 emission rates from these volcanoes could lead to a better understanding of their eruption mechanisms and reduce the impact of their future eruptions on Guatemalan society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号