首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
大气科学   1篇
地球物理   7篇
地质学   9篇
海洋学   11篇
天文学   19篇
综合类   2篇
自然地理   2篇
  2024年   1篇
  2023年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1979年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
We report the mineral compositions and micro-texture of the isotopically anomalous (δ17,18OSMOW ∼ +180‰) Fe-S-Ni-O material recently discovered in matrix of the primitive carbonaceous chondrite Acfer 094 [Sakamoto N., Seto Y., Itoh S., Kuramoto K., Fujino K., Nagashima K., Krot A. N. and Yurimoto H. (2007) Oxygen isotope evidence for remnants of the early solar system primordial water. Science317, 231-233]. Synchrotron radiation X-ray diffraction and transmission electron microscopy studies indicate that this material consists of the symplectitically intergrown magnetite (Fe3O4) and pentlandite (Fe5.7Ni3.3S8) with magnetite/pentlandite volume ratio of ∼2.3. Magnetite forms column-shaped grains (10-30 nm in diameter and 100-200 nm in length); pentlandite occurs as worm-shaped grains or aggregates of grains 100-300 nm in size between magnetite crystals. Although both the X-ray diffraction and electron energy loss spectra support identification of iron oxide as magnetite, the electron diffraction patterns show that magnetite has a weak 3-fold superstructure, possibly due to ordering of vacancies. We infer that the isotopically anomalous symplectite formed by sulfurization and oxidization of metal grains either in the solar nebula or on an icy planetesimal. The intersite cation distribution of pentlandite suggests that timescale of oxidation was no longer than 1000 years.  相似文献   
2.
The energy flux of the Japan Sea Tsunami of May 26, 1983 radiated offshore causing the destruction of ships in Shimane Prefecture, the fourth worst area hit. In 1960, a tsunami from Chile attacked the Pacific coast from the Ryukyu Islands to Adak Island Alaska. The energy flux of the latter was similar to that of the former. The angle formed at the origin off the Chilean coast by the energy flux was 68°48 or possibly slightly larger. The coincidence between the angle given by this process and that by the directivity theory of Miyoshi (1977) is good. The Sanriku District is located approximately on the center line of this angle. Judging from the fact that the Sanriku District was attacked most severely in 1960, it can be suspected that the energy flux was a little more sharply directed than estimated by the theory. The equivalent angle in the case of the Japan Sea Tsunami, which attacked the area from the tip of the Noto Peninsula to the east coast of the Korean Peninsula, was only 45°30 and the smaller angle can be explained as a refraction effect of the Yamato Bank. The above information should be useful for warnings of future tsunamis.  相似文献   
3.
Chemical compositions of materials used for new sample holders (vertically aligned carbon nanotubes [VACNTs] and polyimide film), which were developed for the analysis of Hayabusa2‐return samples, were determined by instrumental neutron activation analysis and/or instrumental photon activation analysis, to estimate contamination effects from the sample holders. The synthetic quartz plate used for the sample holders was also analyzed. Ten elements (Na, Al, Cr, Mn, Fe, Ni, Eu, W, Au, and Th) and 14 elements (Na, Al, K, Sc, Ti, Cr, Zn, Ga, Br, Sb, La, Eu, Ir, and Au) could be detected in the VACNTs and polyimide film, respectively. The VACNT data show that contamination by this material with respect to the Murchison meteorite is negligible in terms of the elemental ratios (e.g., Fe/Mn, Na/Al, and Mn/Cr) used for the classification of meteorites due to the extremely low density of VACNTs. However, for the Au/Cr ratio, even small degrees (1.7 wt%) of contamination by VACNTs will change the Au/Cr ratio. Elemental ratios used for the classification of meteorites are only influenced by large amounts of contamination (>60 wt%) of polyimide film, which is unlikely to occur. In contrast, detectable effects on Ti isotopic compositions are caused by >0.1 and >0.3 wt% contamination by VACNTs and polyimide film, respectively, and Hf isotopic changes are caused by >0.1 wt% contamination by VACNTs. The new sample holders (VACNTs and polyimide film) are suitable for chemical classification of Hayabusa2‐return samples, because of their ease of use, applicability to multiple analytical instruments, and low contamination levels for most elements.  相似文献   
4.
Nondimensionalization of variables enables us to treat experiment data much more simply and efficiently by decreasing the number of variables. In some cases, trivial conclusions (which Kenney, 1982, called spurious self-correlation) result from a formal application of dimensional analyses. In contrast, in some cases fully significant conclusions can be derived. We first discuss how to construct nondimensional variables retaining the physical meanings of variables. We then propose simple and efficient methods, especially the use of “spurious triangle (SpT)”, to discriminate between significant conclusions and spurious self-correlations in the analysis of nondimensionalized variables.  相似文献   
5.
6.
Abstract– Different oxygen isotopic reservoirs have been recognized in the early solar system. Fluffy type A Ca‐Al‐rich inclusions (CAIs) are believed to be direct condensates from a solar nebular gas, and therefore, have acquired oxygen from the solar nebula. Oxygen isotopic and chemical compositions of melilite crystals in a type A CAI from Efremovka CV3 chondrite were measured to reveal the temporal variation in oxygen isotopic composition of surrounding nebular gas during CAI formation. The CAI is constructed of two domains, each of which has a core‐mantle structure. Reversely zoned melilite crystals were observed in both domains. Melilite crystals in one domain have a homogeneous 16O‐poor composition on the carbonaceous chondrite anhydrous mineral (CCAM) line of δ18O = 5–10‰, which suggests that the domain was formed in a 16O‐poor oxygen isotope reservoir of the solar nebula. In contrast, melilite crystals in the other domain have continuous variations in oxygen isotopic composition from 16O‐rich (δ18O = ?40‰) to 16O‐poor (δ18O = 0‰) along the CCAM line. The oxygen isotopic composition tends to be more 16O‐rich toward the domain rim, which suggests that the domain was formed in a variable oxygen isotope reservoir of the solar nebula. Each domain of the type A CAI has grown in distinct oxygen isotope reservoir of the solar nebula. After the domain formation, domains were accumulated together in the solar nebula to form a type A CAI.  相似文献   
7.
Takahashi  Naoya  Hayasaka  Tadahiro  Qiu  Bo  Yamaguchi  Ryohei 《Climate Dynamics》2021,56(11):3511-3526

Active roles of both sea surface temperature (SST) and its frontal characteristics to the atmosphere in the mid-latitudes have been investigated around the western boundary current regions, and most studies have focused on winter season. The present study investigated the influence of the variation of the summertime Oyashio extension SST front (SSTF) in modulating low-level cloud properties (i.e., low-level cloud cover [LCC], cloud optical thickness [COT], and shortwave cloud radiative effect [SWCRE]) on inter-annual timescales, based on available satellite and Argo float datasets during 2003–2016. First, we examined the mechanism of summertime SSTF variability itself. The strength of the SSTF (SSSTF), defined as the maximum horizontal gradient of SST, has clear inter-annual variations. Frontogenesis equation analysis and regression analysis for subsurface temperature indicated that the inter-annual variations of the summertime SSSTF in the western North Pacific are closely related to the variations of not surface heat flux, but western boundary currents, particularly the Oyashio Extensions. The response of low-level cloud to intensified SSSTF is that negative SWCRE with positive COT anomaly in the northern flank of the SSTF can be induced by cold SST anomalies. The spatial scale of the low-level cloud response was larger than the SST frontal scale, and the spatial distribution of the response was mainly constrained by the pathways of Kuroshio and Oyashio Extensions. Multi-linear regression analysis revealed that the local SST anomaly played largest role in modulating the SWCRE and COT anomalies among the cloud controlling factors (e.g., estimated inversion strength, air-temperature advection) accounting for more than 50% of the variation. This study provides an observational evidence of the active role of local SST anomalies in summertime associated with the western boundary currents to the oceanic low-level cloud.

  相似文献   
8.
In both 2009 and 2010, massive Chattonella blooms occurred in Tachibana Bay. Observation results show that high cell densities of Chattonella were distributed in the central area of Tachibana Bay with low salinity water. Model results indicate that the low salinity water originated from the Ariake Sea and intruded into Tachibana Bay during the northerly or weak winds. It is suggested that low salinity water was mainly discharged from the northern area of the Ariake Sea. Northerly wind enhanced the horizontal advection of the low salinity water intruding into Tachibana Bay originating from the northern area of the Ariake Sea.  相似文献   
9.
The run-up height reached by the tsunami of 1896 at the former Ryohri Village had been erroneously recognized as high as only 21.9 m. Our study (1983) renewed the figure of 38.2 m (Matsuo, 1933), which is now officially recognized.In 1980, we selected the spot, Raga, Tanohata Village, and, using a hand level, pointed out the decisive underestimation of the run-up height in Igi's report (1897). Our study, however, provided only circumstantial evidence that the maximum runup at the former Ryohri Village might be 38.2 m. In 1986, we directly studied the run-up height at the saddle point at Ohkubo, the former Ryohri Village using hand levels, and confirmed that it was at least as high as 36 m. Countermeasures for future tsunamis need major revisions, a part of which is the consideration on the combination of the large V-shaped Ryohri Bay and a neighboring small (V+U)-shaped bay. This consideration becomes essential and we show that the (V+U)-shaped bay is of the worst shape, basing on the survival ratios of individual small subhamlets, which have been recently ready for use (Yamashita, 1982).  相似文献   
10.
If knowledge of our theories on the directivity of tsunamis had received worldwide attention, the following operations could have been carried out internationally just after the large earthquake of 19 September 1985 which occurred near Acapulco, Mexico. Having found the great circle, “line S” which is perpendicular to the coast around Acapulco, we could have calculated the angles between line S and line A and between line S and line D, where line A and line D are the great circle connecting Acapulco and Auckland, New Zealand and that connecting Acapulco and Duke of York Island (Chile), respectively. The resultant angles are 30?43′ and 41?49′(>68?48′/2), we could thereafter neglect the eastern half of the offshore energy flux. When we assume that the speed of trans-Pacific tsunami is 400 knots, the probability that the actual tsunami will come earlier than the calculated arrival time proves to be $$\frac{1}{{\sqrt {2\pi } }}\int_{ - {\text{ }}\infty }^{ - {\text{ }}0.689} {e^{ - t^{{2 \mathord{\left/ {\vphantom {2 2}} \right. \kern-\nulldelimiterspace} 2}} } dt = 0.2454} $$ Contact with New Zealand prior to the forecasted arrival time was essential, but the tsunami attention for the Japanese coast was unnecessary. Without such application of our directivity theories, frequent fruitless warnings will be issued for future trans-Pacific tsunamis. Quick improvements in warning procedures are required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号