首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
大气科学   12篇
地质学   6篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
  2002年   11篇
  1998年   1篇
  1997年   1篇
  1976年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
Blockfields, weathering boundaries and marginal moraines have been mapped along a longitudinal transect from northern Andøya to Skånland in northern Norway. The degree of rock-surface weathering above and below glacial trimlines, clay-mineral assemblages and surface exposure dating based on in situ cosmogenic 10Be have been used to reconstruct the vertical dimensions and timing of the Last Glacial Maximum (LGM) of the Scandinavian Ice Sheet in this region. The cosmogenic exposure dates suggest that the lower blockfield boundary/trimline along the Andøya-Skånland transect represents the upper limit of the Late Weichselian ice sheet, with an average surface gradient of c . 9.5 m/km. The surface exposure dates from Andøya pre-date the LGM, suggesting that the LGM ice sheet did not reach mountain plateaux at northwest Andøya. The results thus support evidence from lake sediment records that the northern tip of Andøya was not covered by the Scandinavian Ice Sheet during the LGM.  相似文献   
3.
Dissolution experiments of Mn and Fe under natural conditions from fresh basalt, weathered basalt and Mn laterite by different organic acids show that Mn is highly enriched over Fe in solutions from the weathered rocks but that more Fe than Mn is dissolved from the fresh basalt. The enrichment of Mn is caused by sparingly soluble Fe-oxides and hydroxides and more soluble Mn-oxides. In addition from the weathered rocks the Mn concentration dissolved by the organic acids is up to 1000 times higher than in inorganic solutions. Mn enrichment is caused by acid attack, organic reduction of Mn4+ to Mn2+ and complexing by the organic acids. The complexed Mn is not attacked as easily by oxidation as free Mn ions. Higher concentrations of manganese in the organic dissolved stage can therefore be transported by rivers over greater distances. Organic complexed Mn, derived from lateritic weathered rocks may therefore contribute to the formation of low iron marine sedimentary Mn deposits.  相似文献   
4.
5.
6.
7.
8.
The barrier islands of the southern North Sea were formed during the Holocene sea‐level rise. These islands form part of a highly dynamic environment whose evolution continues today. Subjected to sea‐level changes, tides and storm events, the sedimentary record reflects processes occurring under varying energy conditions. This article presents geochemical, mineralogical and diatom investigations carried out in the salt marsh of the East Frisian barrier island of Langeoog, which is re‐exposed to a rising sea‐level due to de‐embankment. The major aim of this study is to improve the knowledge of the sedimentological and geochemical development of these deposits under the influence of sea‐level rise, with a special focus on the geochemistry and distribution of heavy mineral‐associated elements. Correlation diagrams between FeO, TiO2 and MnO, as well as ternary plots (Al2O3–SiO2–Zr or TiO2), clearly indicate the variable appearance of heavy minerals in different lithological facies, comprising marsh soil, mixed and sand flat, and relocated beach sands. A dominating abundance of ilmenite followed by zircon, garnets and some other heavy minerals is evidenced by Scanning Electron Microscope‐Energy Dispersive X‐ray measurements. The data presented here suggests that these geochemical proxies are useful tools for characterizing depositional energy conditions. Increasing depositional energy is evident for the lithological units in the following order: marsh soil, mixed flat, sand flat and relocated beach sand. The energetic conditions during sediment deposition, as well as the sedimentary history, are confirmed by diatom analyses as an additional independent indicator. Depending on source rock composition, the geochemical parameters used in this study may also help to investigate depositional energy regimes of other siliciclastic sedimentary systems.  相似文献   
9.
Lake El′gygytgyn is situated in a 3·6 Myr old impact crater in North‐eastern Siberia. Its sedimentary record probably represents the most complete archive of Pliocene and Quaternary climate change in the terrestrial Arctic. In order to investigate the influence of gravitational sediment transport on the pelagic sediment record in the lake centre, two sediment cores were recovered from the lower western lake slope. The cores penetrate a sub‐recent mass movement deposit that was identified by 3·5 kHz echo sounding. In the proximal part of this deposit, deformed sediments reflect an initial debris flow characterized by limited sediment mixture. Above and in front of the debrite, a wide massive densite indicates a second stage with a liquefied dense flow. The mass movement event led to basal erosion of ca 1 m thick unconsolidated sediments along parts of its flow path. The event produced a suspension cloud, whose deposition led to the formation of a turbidite. The occurrence of the turbidite throughout the lake and the limited erosion at its base mainly suggest deposition by ‘pelagic rain’ following Stokes’ Law. Very similar radiocarbon dates obtained in the sediments directly beneath and above the turbidite in the central lake confirm this interpretation. When applying the depositional model for the Late Quaternary sediment record of Lake El′gygytgyn, the recovered turbidites allow reconstruction of the frequency and temporal distribution of large mass movement events at the lake slopes. In total, 28 turbidites and related deposits were identified in two, 12·9 and 16·6 m long, sediment cores from the central lake area covering approximately 300 kyr.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号