首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
地球物理   5篇
地质学   10篇
海洋学   3篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1992年   1篇
  1988年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Non-conservative behavior of dissolved inorganic phosphate (DIP) in estuaries is generally ascribed to desorption from iron and aluminum (hydr)oxides with increasing salinity. Here, we assess this hypothesis by simulating the reversible adsorption of phosphate onto a model oxide (goethite) along physico-chemical gradients representative of surface and subsurface estuaries. The simulations are carried out using a surface complexation model (SCM), which represents the main aqueous speciation and adsorption reactions of DIP, plus the ionic strength-dependent coulombic interactions in solution and at the mineral-solution interface. According to the model calculations, variations in pH and salinity alone are unlikely to explain the often reported production of DIP in surface estuaries. In particular, increased aqueous complexation of phosphate by Mg2+ and Ca2+ ions with increasing salinity is offset by the formation of ternary Mg-phosphate surface complexes and the drop in electrical potential at the mineral-water interface. However, when taking into account the downstream decrease in the abundance of sorption sites, the model correctly simulates the observed release of DIP in the Scheldt estuary. The sharp increase in pH accompanying the admixing of seawater to fresh groundwater should also cause desorption of phosphate from iron oxyhydroxides during seawater intrusion in coastal aquifers. As for surface estuaries, the model calculations indicate that significant DIP release additionally requires a reduction in the phosphate sorption site density. In anoxic aquifers, this can result from the supply of seawater sulfate and the subsequent reductive dissolution of iron oxyhydroxides coupled to microbial sulfate reduction.  相似文献   
2.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   
3.
The present study investigates the interaction between microbial growth and activity and the redox dynamics in natural porous media. The impact the transport regime has on this interaction is also addressed. Expressions for microbial growth are incorporated into a geochemical reaction network linking redox reaction rates to the activity of the microorganisms. A flexible simulation environment, the Biogeochemical Reaction Network Simulator (BRNS) is used for this purpose. Two reactive transport applications relevant to fields of contaminant hydrology and early diagenesis are simulated with the BRNS. Model results are evaluated based on a comparison with comprehensive datasets on the biodegradation of lactate in a sand column experiment and on the distribution of redox-sensitive chemical species in marine sediments of the Skagerrak, Denmark. It is shown that, despite quite different transport regimes, the geomicrobiological model performs equally well in the reproduction of measured chemical species distribution for both applications. This result emphasizes the broad applicability of the proposed approach. Our simulations support that the competitive behavior between various microbial groups is a process controlling the development of redox stratified environments. Furthermore, it is also shown that the transport regime is a key controlling factor for the degree of spatial correlation between microbial biomass distributions and redox reaction rates. Although all our simulations yield a pronounced stratification of the redox processes in the system, the biomass distribution is related to the associated reaction rates only in case of the advection controlled column experiment. In the early diagenetic application, mixing due to bioturbation is the dominant transport process for particulate matter, hence leading to fairly homogeneous distribution of bacterial biomasses which are unrelated to the spatial distribution of redox reaction rates. This homogeneous biomass distribution combined with the 1G carbon degradation model approach might explain why the steady state concentration profiles in such systems can be reproduced by diagenetic models without explicit representation of microbial growth.  相似文献   
4.
Regnier  G.  Salinas  P.  Jackson  M. D. 《Hydrogeology Journal》2023,31(4):1067-1082

Aquifer thermal energy storage (ATES) is an underground thermal energy storage technology with a large potential to decarbonise the heating and cooling of buildings. ATES installations typically store thermal energy in aquifers that are also exploited for potable water, so a major consideration during development is ensuring that system operation will not lead to groundwater pollution. In this study, the risk of contamination due to upconing of a shallow freshwater/saltwater interface during ATES operation is investigated. Fluid flow, and heat and salt (chloride ion) transport are simulated in a homogeneous aquifer during ATES operation via a well doublet. The impact of geological, hydrological and operational parameters is investigated in a sensitivity analysis. Two new dimensionless numbers are proposed to characterise salt upconing and redistribution during ATES operation and provide a close match to simulated concentrations: CR,w characterises the contamination risk at the ATES installation, and CR,d characterises the risk at locations downstream of the ATES installation with respect to background groundwater flow. ATES systems with CR,w and CR,d < 10 introduce low risk of contamination in a homogenous aquifer, with chloride concentration at, and downstream of, the ATES system, remaining below the World Health Organisation’s advised limit. ATES installations with CR,w and CR,d > 10 cause a rapid increase in aquifer chloride concentration. The results are used to estimate an exclusion distance beyond which ATES system operation will not cause contamination in a homogenous aquifer. The dimensionless parameters proposed allow rapid assessment of the potential for saltwater contamination during ATES operation.

  相似文献   
5.
A total of 139 breccia and crystalline rock fragments in the size range 2–4 mm from four Apollo 15 soil samples have been examined. Two of the sample stations are on the mare surface (4 and 9A) and two are on the Apennine Front (2 and 6). Approximately 90% of the fragments from the Apennine Front are brown-glass “soil” breccias, but those from the mare surface are 60%–70% basalt. Several textural varieties of mare basalt have been recognized, but within experimental error there is no difference in their40Ar-39Ar ages. The major non-mare (Pre-Imbrian) crystalline rock types in the Apennine Front regolith are KREEP basalt, anorthositic rocks, recrystallized norite (including anorthositic norite) and recrystallized polymict breccias; however, such crystalline rocks are rare in the samples examined. Apparently, the near surface Imbrium ejecta below the regolith has not been thermally recrystallized, and probably there are no outcrops of crystalline rocks upslope from the sample stations.  相似文献   
6.
7.
Abstract. The ecosystem associated to the Mediterranean seagrass Posidonia oceanica shows a clear distinction in two subcompartments regarding turnover time: aboveground and belowground. Aboveground parts (leaves) are highly dynamic, and most of the leaf material is decomposed or exported in less than one year, representing a net loss of nutrients. In contrast, belowground biomass (roots and rhizomes) has a turnover time of the order of centuries, with a consequent accumulation of organic matter in the sediment. The accumulation rates for the single elements rank in the order C > N > P. This ecosystem may be considered as a sink for biogenic elements.  相似文献   
8.
Iron-oxide-coated sediment particles in subterranean estuaries can act as a geochemical barrier (“iron curtain”) for various chemical species in groundwater (e.g. phosphate), thus limiting their discharge to coastal waters. Little is known about the factors controlling this Fe-oxide precipitation. Here, we implement a simple reaction network in a 1D reactive transport model (RTM), to investigate the effect of O2 and pH gradients along a flow-line in the subterranean estuary of Waquoit Bay (Cape Cod, Massachusetts) on oxidative precipitation of Fe(II) and subsequent PO4 sorption. Results show that the observed O2 gradient is not the main factor controlling precipitation and that it is the pH gradient at the mixing zone of freshwater (pH 5.5) and seawater (pH 7.9) near the beach face that causes a  7-fold increase in the rate of oxidative precipitation of Fe(II) at  15 m. Thus, the pH gradient determines the location and magnitude of the observed iron oxide accumulation and the subsequent removal of PO4 in this subterranean estuary.  相似文献   
9.
10.
Estimating the amount of methane in the seafloor globally as well as the flux of methane from sediments toward the ocean–atmosphere system are important considerations in both geological and climate sciences. Nevertheless, global estimates of methane inventories and rates of methane production and consumption through anaerobic oxidation in marine sediments are very poorly constrained. Tools for regionally assessing methane formation and consumption rates would greatly increase our understanding of the spatial heterogeneity of the methane cycle as well as help constrain the global methane budget. In this article, an algorithm for calculating methane consumption rates in the inner shelf is applied to the gas-rich sediments of the Belt Seas and The Sound (North Sea–Baltic Sea transition). It is based on the depth of free gas determined by hydroacoustic techniques and the local methane solubility concentration. Due to the continuous nature of shipboard hydroacoustic measurements, this algorithm captures spatial heterogeneities in methane fluxes better than geochemical analyses of point sources such as observational/sampling stations. The sensibility of the algorithm with respect to the resolution of the free gas depth measurements (2 m vs. 50 cm) is proven of minor importance (a discrepancy of <10%) for a small part of the study area. The algorithm-derived anaerobic methane oxidation rates compare well with previous measured and modeling studies. Finally, regional results reveal that contemporary anaerobic methane oxidation in worldwide inner-shelf sediments may be an order of magnitude lower (ca. 0.24 Tmol year–1) than previous estimates (4.6 Tmol year–1). These algorithms ultimately help improve regional estimates of anaerobic oxidation of methane rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号