首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
大气科学   4篇
地球物理   19篇
地质学   24篇
海洋学   2篇
天文学   3篇
自然地理   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有53条查询结果,搜索用时 437 毫秒
1.
The short-lived 182Hf-182W-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic 182Hf-182W-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 ε182W units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while 182Hf was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value.  相似文献   
2.
Precipitation is often the sole source of water replenishment in arid and semi‐arid areas and, thus, plays a pertinent role in sustaining desert ecosystems. Revegetation over 40 years using mainly Artemisia ordosica and Caragana korshinskii at Shapotou Desert Experimental Research Station near Lanzhou, China, has established a dwarf‐shrub and microbiotic soil crust cover on the stabilized sand dunes. The redistribution of infiltrated moisture through percolation, root extraction, and evapotranspiration pathways was investigated. Three sets of time‐domain reflectometry (TDR) probes were inserted horizontally at 5, 10, 15, 20, 30 and 40 cm depths below the ground surface in a soil pit. The three sets of TDR probes were installed in dwarf‐shrub sites of A. ordosica and C. korshinskii community with and without a microbiotic soil crust cover, and an additional set was placed in a bare sand dune area that had neither vegetation nor a microbiotic soil crust present. Volumetric soil moisture content was recorded at hourly intervals and used in the assessment of infiltration for the different surface covers. Infiltration varied greatly, from 7·5 cm to more than 45 cm, depending upon rainfall quantity and soil surface conditions. In the shrub community area without microbiotic soil crust cover, infiltration increased due to preferential flow associated with root tunnels. The microbiotic soil crust cover had a significant negative influence on the infiltration for small rainfall events (~10 mm), restricting the infiltration depth to less than 20 cm and increasing soil moisture content just beneath the soil profile of 10 cm, whereas it was not as strong or clear for larger rainfall events (~60 mm). For small rainfall events, the wetting front depth for the three kinds of surface cover was as follows: shrub community without microbiotic soil crust > bare area > shrub community with microbiotic soil crust. In contrast, for large rainfall events, infiltration was similar in shrub communities with and without microbiotic soil crust cover, but significantly higher than measured in the bare area. Soil water extraction by roots associated with evapotranspiration restricted the wetting front penetration after 1 to 3 h of rainfall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
3.
Four cases are studied in this assessment of how the harsh 2010 winter weather affected rail freight operations in Norway, Sweden, Switzerland and Poland and also of the reactive behaviour rail managers mobilised to reduce the adverse outcomes. The results are utilised in a fifth case assessing the proportion of freight train delays in Finland during 2008–2010 by modelling the odds for freight train delays as a function of changes in met-states on the Finnish network and weather-induced infrastructure damage. The results show that rail operators were totally unprepared to deal with the powerful and cascading effects of three harsh weather elements—long spells of low temperatures, heavy snowfalls and strong winds—which affected them concurrently and shut down large swathes of European rail infrastructure and train operations. Rail traffic disruptions spread to downstream and upstream segments of logistics channels, causing shippers and logistics operators to move freight away from rail to road transfer. As a result, railways lost market share for high-value container cargo, revenues and long-term business prospects for international freight movement. Analyses of measures employed to mitigate the immediate damage show that managers improvised their ways of handling crises rather than drew on a priori contingency, i.e. fight-back programmes and crisis management skills. Modelling the co-variation between extreme weather and freight train delays in Finland during 2008–2010 revealed that 60 % of late arrivals were related to winter weather. Furthermore, the combined effect of temperatures below ?7 °C and 10–20 cm changes in snow depth coverage from 1 month to the next explained 62 % of the variation in log odds for freight train delays. Also, it has been shown that changes in the number of days with 10–20 cm snow depth coverage explained 66 % of the variation in late train arrivals, contributing to 626 min or 10.5 additional hours’ delay. Changes in the number of days with snowfalls over 5 mm accounted for 77 % variation in late train arrivals, implying that each additional day with this snowfall could contribute to 19.5 h’ delay. Finally, the combination of increased mean number of days with 5 mm snowfall and temperature below ?20 °C explained 79 % of the variation in late arrivals, contributing to 193 min or 3.25 h’ delay. All results were significant (p = 0.00).  相似文献   
4.
The newly discovered Ritland impact structure (2.7?km in diameter) has been modeled by numerical simulation, based on detailed field information input. The numerical model applies the SOVA multi-material hydrocode, which uses the ANEOS equation of state for granite, describing thermodynamical properties of target and projectile material. The model displays crater formation and possible ejecta distribution that strongly supports a 100?m or less water depth at the time of impact. According to the simulations resurge processes and basinal syn- and postimpact sedimentation are highly dependent on water depth; in more than 100?m of water depth, much more powerful resurge processes are generated than at water depths shallower than 100?m (the Ritland case). In Ritland the 100?m high (modeled) crater rim formed a barrier and severely reduced the resurge processes. In the case of deeper water, powerful resurge processes, tsunami wave generations and related currents could have triggered even more violent crater fill sedimentation. The presented model demonstrates the importance of understanding the interactions between water layer and both syn-impact crater fill and ejecta distribution. According to the presented simulations ejecta blocks up to 10?m in diameter could be transported up to about 5?km outside the crater rim.  相似文献   
5.
Lake water level forecasting is very important for an accurate and reliable management of local and regional water resources. In the present study two nonlinear approaches, namely phase-space reconstruction and self-exciting threshold autoregressive model (SETAR) were compared for lake water level forecasting. The modeling approaches were applied to high-quality lake water level time series of the three largest lakes in Sweden; Vänern, Vättern, and Mälaren. Phase-space reconstruction was applied by the k-nearest neighbor (k-NN) model. The k-NN model parameters were determined using autocorrelation, mutual information functions, and correlation integral. Jointly, these methods indicated chaotic behavior for all lake water levels. The correlation dimension found for the three lakes was 3.37, 3.97, and 4.44 for Vänern, Vättern, and Mälaren, respectively. As a comparison, the best SETAR models were selected using the Akaike Information Criterion. The best SETAR models in this respect were (10,4), (5,8), and (7,9) for Vänern, Vättern, and Mälaren, respectively. Both model approaches were evaluated with various performance criteria. Results showed that both modeling approaches are efficient in predicting lake water levels but the phase-space reconstruction (k-NN) is superior to the SETAR model.  相似文献   
6.
Abstract

Agricultural use and related water erosion may lead to significant changes in the sedimentological and hydrological characteristics of watersheds, and therefore negative consequences for rural development. This research aimed to put present-day soil erosion of the important Mejerda catchment into a historical context. The catchment of Wadi Mejerda in northern Tunisia has experienced soil erosion due to weather and human impacts for thousands of years. We used historical texts and results from archaeological research that go back to 1000 BC, as well as data collected during the last century. Soil erosion from different types of agricultural landscape management was analysed together with information on the soils' production potential, the hydrographic network and flood frequency. The results showed that water erosion has increased the hydrographic network by 65 km and increased the deltaic plain by as much as 15 km2/century. However, soil productivity has decreased significantly. Moreover, due to in channel sedimentation and river choking, the number of flooding occurrences has multiplied over the last century. Finally, it is shown that water erosion follows a specific cycle of degradation throughout the watershed. These findings should be considered for better water and soil management in the context of semi-arid areas.

Editor Z.W. Kundzewicz

Citation Jebari, S., Berndtsson, R., Lebdi, F., and Bahri, A., 2012. Historical aspects of soil erosion in the Mejerda catchment. Hydrological Sciences Journal, 57 (5), 901–912.  相似文献   
7.
ESA’s Gaia mission will collect low resolution spectroscopy in the optical range for ~109 objects. Complete and up-to-date libraries of synthetic stellar spectra are needed to built algorithms aimed to automatically derive the classification and the parametrization of this huge amount of data. In addition, libraries of stellar spectra are one of the main ingredients of stellar population synthesis models, aiming to derive the properties of unresolved stellar populations from their integrated light. We present (a) the newly computed libraries of synthetic spectra built by the Gaia community, covering the whole optical range (300–1100 nm) at medium-high resolution of (0.3 nm) for stars spanning the most different types, from M to O, from A-peculiar to Emission lines to White Dwarfs, and (b) the implementation of those libraries in our SSP code (Tantalo in The Initial Mass Function 50 Years Later, 327:235 2005), exploring different stellar evolution models.  相似文献   
8.
In this paper, we compare integrated water vapour (IWV) retrievals from the Moderate Resolution Spectrometer (MODIS) instrument on board the polar-orbiting Terra platform with those from the coupled regional climate model system BALTIMOS for a period of 2 years (October 2001 to October 2003). The comparison was made for the whole drainage basin of the Baltic Sea as well as major parts of Central Europe. The qualitative comparison between the two data sets of the integrated water vapour shows a good agreement. The patterns in the spatial distribution of the averaged integrated water vapour in both data sets are quite similar. However, significant differences occur in the Hungarian Lowlands, along the Po River and the Wallachia (Romania) in the order of 2.5 to 7.0 kg/m2. For these areas, the BALTIMOS model is dryer than the MODIS observations. This could be an indication for the known summer drying effect of BALTIMOS but needs further investigations. The annual cycle as well as a diurnal developing of integrated water vapour from 09:00 to 12:00 UTC is well pronounced in both data sets. For both data sets, the overall annual variations are 17.5 kg/m2. The observed overall diurnal variability are 1.4 kg/m2 for MODIS and 1.04 kg/m2 for BALTIMOS, respectively.  相似文献   
9.
Groundwater is a finite resource that is threatened by pollution all over the world. Shimabara City, Nagasaki, Japan, uses groundwater for its main water supply. During recent years, the city has experienced severe nitrate pollution in its groundwater. For better understanding of origin and impact of the pollution, chemical effects and surface–groundwater interactions need to be examined. For this purpose, we developed a methodology that builds on joint geochemical analyses and advanced statistical treatment. Water samples were collected at 42 sampling points in Shimabara including a part of Unzen City. Spatial distribution of water chemistry constituents was assessed by describing Stiff and Piper diagrams using major ions concentrations. The nitrate (NO3?+?NO2–N) concentration in 45% of water samples exceeded permissible Japanese drinking level of 10 mg L??1. Most of the samples showed Ca–HCO3 or Ca–(NO3?+?SO4) water types. Some samples were classified into characteristic water types such as Na–Cl, (Na?+?K)–HCO3, (Na?+?K)–(SO4?+?NO3), and Ca–Cl. Thus, results indicated salt water intrusion from the sea and anthropogenic pollution. At the upstream of Nishi River, although water chemistry was characterized as Ca–HCO3, ion concentrations were higher than those of other rivers. This is probably an effect of disinfection in livestock farming using slaked lime. Positive correlation between NO3? and SO42?, Mg2+, Ca2+, Na+, K+, and Cl? (r?=?0.32–0.64) is evidence that nitrate pollution sources are chemical fertilizers and livestock waste. Principal component analysis showed that chemistry of water samples can be explained by three main components (PCs). PC1 depicts general ion concentration. PC2 and PC3 share influence from chemical fertilizer and livestock waste. Cluster analyses grouped water samples into four main clusters. One of these is the general river chemistry mainly affected by PC1. The others reflect anthropogenic activities and are identified by the combination of the three PCs.  相似文献   
10.
International Journal of Earth Sciences - The Chemnitz Fossil Forest depicts one of the most completely preserved forest ecosystems in late Paleozoic Northern Hemisphere of tropical Pangaea. Fossil...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号