首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地质学   18篇
  2007年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1981年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Geochemical data are presented for the meta-igneous, mafic-ultramafic complex near Finero. This complex is in contact with a phlogopite-bearing mantle peridotite and is subdivided into the Internal Gabbro unit, the Amphibole Peridotite unit, and the External Gabbro unit. The Internal Gabbro and the Amphibole Peridotite units consist of coarse-grained, chemically heterogeneous cumulates, whereas the External Gabbro unit is generally massive, chemically more uniform and approximately representative of the residual melt with MgO contents between 6.6 and 9.1% and Mg numbers between 38 and 58. Both whole-rock and mineral contents of Ni and Cr are significantly higher (at similar Mg numbers) in the Amphibole Peridotite unit than in the Internal Gabbro unit. The most straightforward interpretation of this is that the Amphibole Peridotite unit accumulated after the influx of fresh mafic (or ultramafic) magma into the magma chamber. Major-element chemical trends are continuous from the Amphibole Peridotite unit to the External Gabbro unit and are consistent with closed-system fractionation with no further addition of magma or contamination by wall or roof rock assimilation. In the External Gabbro unit, total FeO and TiO2 contents are strongly correlated with each other (and with P2O5 and Zr) and reach values as high as 19 and 4%, respectively, indicating an advanced degree of crystal fractionation along a tholeftic trend. The External Gabbro samples have generally smooth normalized trace element patterns, which are consistent with being representative of a liquid composition. The residual nature of the External Gabbro magma is also indicated by negative Eu and Sr anomalies, clear evidence for prior feldspar fractionation. REE patterns are otherwise indistinguishable from N-type MORB, but Th and U are significantly more depleted than in MORB. This Th and U depletion is similar to that found in olivine basalts and picrites on Iceland and Hawaii; its origin is not well understood. No evidence is seen for any assimilation of crystal material, in sharp contrast with the situation of the igneous complex in Val Sesia near Balmuccia, where the magma composition is dominated by assimilation of crust. We suggest that the heat provided by at most two injections of magma near Finero was insufficient to induce crystal anatexis, in contrast with the excess heat supplied by multiple magma injections at Balmuccia.  相似文献   
2.
Summary Spinel occurs in the pyroxenitic, peridotitic and gabbroic layers of the Ivrea-Verbano layered igneous complex. Its composition varies between picotite and Mg-hercynite. Maximum Cr2O3 contents are found in the spinels of the dunitic cumulitic layers occurring at some height above the base of the complex. Chromium deposits are absent. The lack of chromite and of chromium deposits is attributed to the early fractionation of clinopyroxene (which depleted the residual liquid in chromium) instead of olivine, as a consequence of the relatively high pressure prevailing during crystallization (8 kb). The relationships betweenfO2-composition of spinel-composition of the silicate phases indicate thatfO2 exerted a major control on the internal stratigraphy of the single layers and on the pattern of fractionation. The variation offO2 are on their turn related to accidental variations of the pressure acting on the magma.It is finally suggested that chromium deposits are limited to low pressure layered intrusions, where the magma has been emplaced rapidly into a shallow magma chamber. No chromium concentration is to be expected in those complexes that crystallized into deep-seated magma chambers and that fractionated at relatively high pressure, not markedly different from that at which the magma was produced. One of the major controls on the presence of chromium deposits results, therefore, to be the geotectonic environment of intrusion.
Chrom-Spinell im geschichteten vulkanischen Komplex von Ivrea-Verbano, Westalpen, Italien
Zusammenfassung Für die Spinelle der Pyroxenit-, Peridotit- und Gabbro-Lagen des Ivrea-Verbano-Intrusivkomplexes wurde eine Zusammensetzung im Bereich Picotit und Mg-Herzynit bestimmt. Die Dunit-Lagen im basalen Anteil des Komplexes führen Spinelie mit Cr2O3-Gehalten bis zu 30 Gew-%. Chromerz-Konzentrationen fehlen jedoch, was auf die fraktionierte Kristallisation von Klinopyroxen (und Entstehung Cr-Restschmelzen) an Stelle von Olivin, als Folge der bei relativ hohem Druck (8 kbar) erfolgten Intrusion, zurückzuführen ist. Die Beziehungen zwischen Sauerstoffpartialdruck und Spinell- und Silikat-Zusammensetzung zeigen den bedeutendenfO2-Einfluß auf den stratigraphischen Aufbau der einzelnen Gesteinslagen und auf die fraktionierenden Kristallisationsvorgänge. Die schwankendenfO2-Werter stehen in Zusammenhang mit den ebenfalls variierenden auf das Magma wirkenden Drücken.Es ist anzunehmen, daß Chromerzkonzentrationen nur in geschichteten Intrusivkomplexen vorkommen, die sich unter niederem Druck bzw. in einer oberflächennahen Magma-Kammer bildeten, und nicht in jenen, die tiefer intrudierten und bei hohem Druck kristallisierten. Von großer Bedeutung für die Bildung von Chromerzlagerstätten ist also das geotektonische Milieu der Intrusion.


With 7 Figures  相似文献   
3.
Summary Microprobe analyses of olivines, orthopyroxenes and clinopyroxenes of the Ivrea-Verbano basic formation reveal that in the Balmuccia Periodotites (regarded as residual mantle) the phases are more magnesian than in the overlaying ultramafic-mafic series (interpreted as a cumulitic complex formed by fractionation of mantle-derived magma).Pyroxenes underwent sub-solidus re-equilibration. Whole phase (host + exsolved lamellae) compositions give a temperature in the range 946°C–1236°C, compatible with the igneous crystallisation. The compositions of the host phases give temperatures in the range 712°C to 919°C, indicating that the samples did not attain the same degree of equilibrium during the sub-solidus unmixing. The sub-solidus unmixing of the pyroxenes may have occurred either during the superimposed granulite-facies metamorphism or during the slow cooling of the complex intruded into deep crustal levels.
Pyroxene und Olivine als Indikatoren der petrologischen Entwicklung der basischen Formation von Ivrea-Verbano (Italienische Westalpen)
Zusammenfassung Mikrosondenanalysen von Olivinen, Orthopyroxenen und Klinopyroxenen der basischen Formation von Ivrea-Verbano zeigen, daß in den Balmuccia Peridotiten (die als residuales Mantelmaterial angesehen werden) die Phasen Mg-reicher sind als in den überlagernden ultramafischen bis mafischen Serien (die als Kumulationskomplex gedeutet werden, der durch Fraktionierung eines aus dem Mantel stammenden Magmas gebildet wurde).Die Pyroxene wurden unter Subsolidus-Bedingungen reequilibriert. Die Zusammensetzungen der Gesamtphasen (Wirt + Entmischungslamellen) geben Temperaturen im Bereich von 946–1236°C, was mit einer magmatischen Kristallisation verträglich ist. Die Zusammensetzungen der Wirt-Phasen geben Temperaturen im Bereich von 712–919°C an, was anzeigt, daß die Proben während der Subsolidus-Entmischung nicht denselben Grad der Equilibirierung erreichten. Die Subsolidus-Entmischung der Pyroxene kann entweder während der überlagerten Metamorphose in Granulitfazies oder während der langsamen Abkühlung des in tiefe Krustenschichten intrudierten Komplexes geschehen sein.


With 4 Figures  相似文献   
4.
Whole-rock Nd and Sr isotopic compositions of the mafic-ultramafic complex near Finero demonstrate that the magma was derived from a depleted, perhaps MORB-type mantle reservoir. The Sm-Nd data for the Amphibole Peridotite unit can be interpreted as an isochron with an apparent age of 533 ± 20 Ma, which is consistent with a 207Pb/206Pb evaporation age of 549 ± 12 Ma of a single zircon grain from the Internal Gabbro unit. However, the interpretation of these apparent ages remains open to question. We therefore retain the alternative hypotheses that the intrusion occurred either about 533 or 270 Ma ago, the latter being the most likely age of emplacement of the much larger magma body near Balmuccia (Val Sesia). The implication of the older emplacement age (if correct) would be that the igneous complex may be related to the numerous amphibolite units, which are intercalated with the metapelites of the overlying Kinzigite Formation, and together with them may constitute an accretionary complex. In this case, the mafic-ultramafic complex itself might also be part of such an accretionary complex (as has been proposed for the Balmuccia peridotite).

Internal Sm-Nd isochrons involving grt, cpx, plag and amph from the Internal Gabbro unit yield concordant ages of 231 ± 23, 226 ± 7, 223 ± 10, 214 ± 17, and 203 ± 13 Ma. These results confirm published evidence for a separate, regional heating event about 215 ± 15 Ma ago.

Initial Nd(533) values average +6.3 ± 0.4 for six samples of the Amphibole Peridotite unit and +6.0 ± 1.2 for ten samples of the External Gabbro unit. 87Sr/86Sr ratios require little or no age correction and range from 0.7026 to 0.7047 (with two outliers at 0.7053 and 0.7071). Strong correlations between 87Sr/86Sr and K2O and weaker correlations between initial Nd and K2O imply a comparatively minor (≤ 10%) contamination of the External Gabbro magma by crustal material and a later alteration by a crustal or seawater-derived fluid. These results contrast sharply with the isotopic composition (negative Nd and high 87Sr/86Sr values) of the associated mantle rocks, the Phlogopite Peridotite unit, which has been pervasively metasomatized by crustal fluids. This type of metasomatism and its isotopic signature are never seen in the magmatic complex. This evidence rules out any direct genetic relationship between the igneous complex and the mantle peridotite. The crust-mantle interaction is the opposite of that seen at Balmuccia, where the mantle peridotite is essentially ‘pristine’ and the magmatic body has been extensively contaminated by assimilation of crustal rocks.  相似文献   

5.
 Field, mineralogical and petrological data are presented on a newly found carbonatite occurrence associated with “kamafugite” lava at Cupaello, central Italy. This carbonatite occurrence is part of the Late Pleistocene Umbria-Latium ultra-alkaline district (ULUD) which extends southwards within the Apennines to Mount Vulture, delineating an important magmatic province along the most peripheral belt of the Tyrrhenian extensional tectonic system. This province is distinct, but probably related genetically with the more abundant and common leucite-bearing assemblages of the Roman Comagmatic Region and represents the first reported occurrence of carbonatite assemblages in the Mediterranean Basin. The Cupaello suite indicates that primary or near-primary mantle silicate melts of “kamafugitic” composition are transitional with Ca-carbonatite liquid and provides direct evidence of immiscibility of carbonatite from “kamafugite” magma. It is inferred that a primary mantle origin of Ca-carbonatites is conditional upon a potential silicate magma that may be coupled with the carbonatite, but may not have reached the surface. The data indicate a strong genetic link between ULUD Ca-carbonatites and some African analogues, supporting the view that their genesis depends on similar source and associated tectonic conditions. Received: 17 January 1995 / Accepted: 14 June 1995  相似文献   
6.
The possibility of para-amphibolites originating from the metamorphic transformation of graywackes is investigated. A series of 35 samples of Vosges graywackes has been studied and the geochemical trends for major and trace elements have been determined to this end. The strong similarity of the geochemical characteristics of this group of graywackes to those of a series of para-amphibolites of the Western Alps conforms to the present hypothesis. By comparing sedimentary geochemical trends with igneous trends one is able to distinguish ortho- from para-derivatives.  相似文献   
7.
Biotites from mafic rocks occurring at different stratigraphic levels of the Ivrea-Verbano Mafic Complex are studied. The rocks are gabbros and diorites. All the biotites are intermediate between phlogopite and annite [0.282 (up to 7.14 and 9.32 wt%, respectively) with respect to those of the diorites (up to 1.26 and 6.26 wt%, respectively). Systematic compositional variations support the substitution model 2 IV Si+( IV R2+)2 IV Al+ VI Ti (R2+=Fe+Mg+Mn) in gabbros and IV Si+ VI Al IV Al+ VI Ti in diorites. A predominance of disordered stacking sequences, coexisting with 1M, 2M 1 and 3T polytypes was observed in all biotites. It was possible to carry out structural refinements only on three biotites-2M 1 from diorites (R-values between 2.68 and 3.77) and one biotite-1M from gabbros (R-value=3.09). It was shown that: (1) the reduced thickness of the tetrahedral sheet in Ba-rich biotites supports the coupled substitution IV Si+ XII K IV Al+ XII Ba; (2) the interlayer site geometry is affected by the whole layer chemistry and does not reflect only local chemical variations; (3) in two samples of the 2M 1 polytype, the M(1) octahedral site is larger and more distorted than the M(2) sites because of the preferential ordering of Fe2+ in the M(1) site, whereas one sample shows complete cation disorder in the octahedral sites. Biotite-1M shows that Fe2+ can also be located in the M(2) site. Some of the differences between the biotites of gabbros and diorites (e.g. Ba concentration and exchange vectors) may be linked to the host rock composition and to its crystallization process. Biotite occurs in trace amounts in gabbros and its crystallization is related to the interstitial melt which contributed to the adcumulus growth of the main rock forming phases and became highly enriched in K, Ba and Ti. Diorites are the result of equilibrium crystallization of a residual melt rich in incompatible elements, where biotite is a major constituent.  相似文献   
8.
The Balmuccia peridotite massif in the central Ivrea Zone constitutes an upper mantle slice which has been tectonically emplaced into the crust. It represents the residue from partial melting of undepleted mantle material and varies in composition from lherzolite to harzburgite and subordinate dunite. Dikes of websterite and gabbroic pods within the peridotite can be subdivided into an older Crdiopside suite and a younger Al-augite suite. Nd isotopic data on whole rocks of these lithotypes in combination with independent observations suggest that the dikes formed during a Hercynian event about 270 Ma ago. The rocks of the Cr-diopside dikes, in particular, display isotopic signatures similar to those of the lherzolite and represent fractionates from partial melts derived from the lherzolite wall rock. The Sm-Nd data of the pyroxenites and gabbros of the Al-augite suite, in contrast, scatter widely and suggest that partial melting of lherzolite was triggered or at least accompanied by introduction of fluids and/or liquid phases. These fluids or liquids carried exotic isotopic components from elsewhere in the crust-mantle complex, and deposited them within the rocks by metasomatic reactions. Two distinct types of metasomatism must have operated not only within the Balmuccia body, but also in the complex of Finero: The first type of metasomatism introduced mantle-derived volatiles and is responsible for formation of amphibole. The other type has a crustal source and led to formation of phlogopite, which occurs mainly within mantle rocks of Finero, but occasionally, within the Balmuccia body also.  相似文献   
9.
The Finero peridotite massif is a harzburgite that suffered a dramatic metasomatic enrichment resulting in the pervasive presence of amphibole and phlogopite and in the sporadic occurrence of apatite and carbonate (dolomite)-bearing domains. Pyroxenite (websterite) dykes also contain phlogopite and amphibole, but are rare. Peridotite bulk-rock composition retained highly depleted major element characteristics, but was enriched in K, Rb, Ba, Sr, LREE (light rare earth elements) (LaN/YbN = 8–17) and depleted in Nb. It has high radiogenic Sr (87Sr/86Sr(270) = 0.7055–0.7093), low radiogenic Nd (ɛNd(270) = −1 to −3) and EMII-like Pb isotopes. Two pyroxenite – peridotite sections examined in detail show the virtual absence of major and trace element gradients in the mineral phases. In both rock types, pyroxenes and olivines have the most unfertile major element composition observed in Ivrea peridotites, spinels are the richest in Cr, and amphibole is pargasite. Clinopyroxenes exhibit LREE-enriched patterns (LaN/YbN ∼16), negative Ti and Zr and generally positive Sr anomaly. Amphibole has similar characteristics, except a weak negative Sr anomaly, but incompatible element concentration ∼1.9 (Sr) to ∼7.9 (Ti) times higher than that of coexisting clinopyroxene. Marked geochemical gradients occur toward apatite and carbonate-bearing domains which are randomly distributed in both the sections examined. In these regions, pyroxenes and amphibole (edenite) are lower in mg## and higher in Na2O, and spinels and phlogopite are richer in Cr2O3. Both the mineral assemblage and the incompatible trace element characteristics of the mineral phases recall the typical signatures of “carbonatite” metasomatism (HFSE depletion, Sr, LILE and LREE enrichment). Clinopyroxene has higher REE and Sr concentrations than amphibole (amph/cpxDREE,Sr = 0.7–0.9) and lower Ti and Zr concentrations. It is proposed that the petrographic and geochemical features observed at Finero are consistent with a subduction environment. The lack of chemical gradients between pyroxenite and peridotite is explained by a model where melts derived from an eclogite-facies slab infiltrate the overhanging harzburgitic mantle wedge and, because of the special thermal structure of subduction zones, become heated to the temperature of the peridotite. If the resulting temperature is above that of the incipient melting of the hydrous peridotite system, the slab-derived melt equilibrates with the harzburgite and a crystal mush consisting of harzburgite and a silica saturated, hydrous melt is formed. During cooling, the crystal mush crystallizes producing the observed sequence of mineral phases and their observed chemical characteristics. In this context pyroxenites are regions of higher concentration of the melt in equilibrium with the harzburgite and not passage-ways through which exotic melts percolated. Only negligible chemical gradients can appear as an effect of the crystallization process, which also accounts for the high amphibole/clinopyroxene incompatible trace element ratios. The major element refractory composition is explained by an initially high peridotite/melt ratio. The apatite, carbonate-bearing domains are the result of the presence of some CO2 in the slab-derived melt. The CO2/H2O ratio in the peridotite mush increased by crystallization of hydrous phases (amphibole and phlogopite) locally resulting in the unmixing of a late carbonate fluid. The proposed scenario is consistent with subduction of probably Variscan age and with the occurrence of modal metasomatism before peridotite incorporation in the crust. Received: 20 July 1998 / Accepted: 28 October 1998  相似文献   
10.
Paleoproterozoic basaltic, andesitic and rhyolitic dykes crosscut the Archaean Carajás basement. Basalts are distinguished into a high and a low TiO2 group (HTi and LTi), each group consisting of geochemically distinct NE- and NW-trending swarms. The HTi dykes are evolved transitional basalts having essentially EMORB-type geochemistry. The LTi basalts are tholeiites (NE-trending swarm) and high-Al basalts (NW-trending swarm) displaying incompatible trace elements patterns with variably negative Nb anomaly, enrichment in Rb, Ba, K (LILE) and La, Ce and Nd (LREE) and positive Sr anomaly. With respect to orogenic analogues, andesites have lower Al2O3, CaO and Ni, higher FeO, LILE, LREE, Nb, Zr and Ti and negative Sr anomaly. Rhyolites have geochemical characteristics comparable with those of A-type granites. At 1.8 Ga, ranges from 0.700 to 0.705 in the HTi basalts and from 0.700 to 0.704 in the LTi group. Andesites define an isochron of 1874±110 Ma (Sro=0.7038±0.0010). Rhyolites from Southern and Northern Carajás define two isochrons of 1802±130 Ma (Sro=0.7062±0.0046) and 1535±82 Ga (Sro=0.7625) respectively, the younger date being interpreted as resetting of the Rb–Sr isotopic system. We propose a petrogenetic model relating LTi basalts with melting of lithospheric mantle metasomatized by acid melts derived from incipient melting of eclogites, representing in turn the subsolidus product of basaltic batches trapped in the mantle. The HTi basalts are explained by melting of the lithospheric mantle containing the complementary residual eclogite. Andesite petrogenesis is consistent with crystal fractionation from a high-Mg andesite parent derived from a mantle source more extensively metasomatized by eclogite-derived melts. Rhyolite composition is consistent with low melting degree of the basement rocks. The basalt–andesite–rhyolite dykes may represent the effects of crustal extension and arching in Carajás, which produced the anorogenic acid to intermediate magmatism (Uatumã group) and affecting a large part of the Amazon craton between 1.85 and 1.7 Ga.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号