首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
  国内免费   1篇
大气科学   4篇
地球物理   4篇
地质学   19篇
海洋学   9篇
自然地理   4篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
A semi‐analytical method for calculating the response of single piles and pile groups subjected to lateral loading is developed in this paper. Displacements anywhere in the soil domain are tied to the displacements of the piles through decay functions. The principle of virtual work and the calculus of variations are used to derive the governing differential equations that describe the response of the piles and soil. The eigenvalue method and the finite difference technique are used to solve the system of coupled differential equations for the piles and soil, respectively. The proposed method takes into account the soil surface displacement along and perpendicular to the loading direction and produces displacement fields that are very close to those produced by the finite element method but at lower computational effort. Compared with the previous method that considered only the soil displacement along the loading direction, accounting for the multi‐directional soil displacement field produces responses for the piles and soil that are closer to those approximated by the finite element method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
In recent years, pile jacking has become a viable alternative installation method for displacement piles. Pile jacking produces minimal noise, vibration and air pollution during installation. In addition, it is possible, at the end of jacking, to have a good estimate of the ultimate static capacity of the pile. In this paper, the shaft resistance of piles jacked into sand is studied using one‐dimensional finite element analysis. The finite element simulations, using a two‐surface plasticity model, demonstrate the effects of relative density and confinement on the unit shaft resistance of piles jacked in sand. The impact of the number of jacking strokes on the unit shaft capacity is also assessed. Based on the numerical results, we developed equations for shaft resistance quantifying the effects of relative density, initial confinement and number of jacking strokes. Predictions using these equations are compared with data obtained from centrifuge tests and field tests. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
3.
Changing atmospheric conditions often result in a data distribution shift in remote sensing images for different dates and locations making it difficult to discriminate between various classes of interest. To alleviate this data shift issue, we introduce a novel supervised classification framework, called Classify-Normalize-Classify (CNC). The proposed scheme uses a two classifier approach where the first classifier performs a rough segmentation of the class of interest (COI) in the input image. Then, the median signal of the estimated COI regions is subtracted from all image pixels values to normalize them. Finally, the second classifier is applied to the normalized image to produce the refined COI segmentation. The proposed methodology was tested to detect deforestation using bitemporal Landsat 8 OLI images over the Amazon rainforest. The CNC framework compared favorably to benchmark masks of the PRODES program and state-of-the-art classifiers run on surface reflectance images provided by USGS.  相似文献   
4.
The present work quantifies the erosive processes in the two main substrates (schists–phyllites and granites–gneisses) of the upper Maracujá Basin in the Quadrilátero Ferrífero/MG, Brazil, a region of semi‐humid tropical climate. Two measuring methods of concentration were used: (i) in situ produced 10Be in quartz veins (surface erosion rates) and (ii) 10Be in fluvial sediments (basin erosion rates). The results confirm that (i) erosion tends to be more aggressive close to the headwaters than in the lower parts of the basin and (ii) the region is now affected by dissection. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
5.
Use of tire shred–soil mixtures as backfill materials in mechanically stabilized earth walls has several advantages over other backfill materials: (1) good drainage, (2) high shear strength, and (3) low compacted unit weight. This paper presents the results of laboratory pullout tests performed on uniaxial geogrid embedded in tire shred–sand mixtures. The effects of tire shred size, tire shred–sand mixing ratio and confining pressure on the interaction between the geogrid and tire shred–sand mixtures are evaluated. Three sizes of tire shreds are considered: tire chips (with 9.5 mm nominal size), tire shreds 50-to-100 mm long and tire shreds 100-to-200 mm in length, with mixing ratios of 0, 12, 25 and 100 % of tire shreds in the mixtures (by weight). Based on compaction testing of a number of mixtures, the optimal mixing proportion of tire shreds and sand was found to lie between 25/75 and 30/70 (by weight of tire shred and sand); this is equivalent to approximately 40/60 and 50/50, respectively, by volume of tire shreds and sand. The pullout resistance of a geogrid embedded in tire shred–sand mixtures is significantly higher than that of the same geogrid embedded in tire shreds only. The size of the tire shreds has negligible effect on the pullout resistance of a geogrid embedded in mixtures prepared with either low (12/88 mix) or high (100/0 mix) tire shred content. However, when the 25/75 mixture is used, greater geogrid pullout resistance was obtained for the geogrid embedded in tire chip–sand mixtures than in tire shred–sand mixtures.  相似文献   
6.
The Serra do Mar escarpment, located along the southeastern coast of Brazil, is a high‐elevation passive margin escarpment. This escarpment evolved from the denudation of granites, migmatites and gneisses. The granites outcrop in the form of a ridge along the escarpment crest, due to its differential erosion (‘sugarloaf’ hills) from the surrounding lithologies. Several studies suggest that the passive margin escarpments are actively retreating toward the interior of the continent. However, no prior study has calculated the long‐term denudation rates of Serra do Mar to test this hypothesis. In this study, we measured the in situ‐produced 10Be concentration in fluvial sediments to quantify the catchment‐wide long‐term denudation rates of the Serra do Mar escarpment in southern Brazil. We sampled the fluvial sediments from ten watersheds that drain both sides of the escarpment. The average long‐term denudation rate of the oceanic side is between 2.1‐ and 2.6‐fold higher than the rate of the continental side: 26.04 ± 1.88 mm ka‐1 (integrating over between 15.8 ka‐1 and 46.6 ka‐1) and 11.10 ± 0.37 mm ka‐1 (integrating over between 52.9 ka‐1 and 85.4 ka‐1), respectively. These rates indicate that the coastal base level is controlling the escarpment retreat toward the continental high lands, which is consistent with observations made at other high‐elevation passive margins around the globe. The results also demonstrate the differential erosion along the Serra do Mar escarpment in southern Brazil during the Quaternary, where drainages over granites had lower average denudation rates in comparison with those over migmatites and gneisses. Moreover, the results demonstrate that the ocean‐facing catchments have been eroded more intensely than those facing the continent. The results also reveal that drainage over the granites decreases the average denudation rates of the ocean‐facing catchments and the ‘sugarloaf’ hills therefore are natural barriers that slowly retreat once they are exhumed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
The objective of this study is to document and interpret a recently discovered carbonate-cemented coastal barrier on the inner shelf of the Gulf of Valencia (western Mediterranean Sea). The coastal barrier was identified in a high-resolution digital bathymetric model based on a cartographic survey of the study area using a multibeam echosounder. Moreover, radiocarbon dating and petrographic analyses were performed on a rock sample recovered from the seabed. The data reveal the submerged coastal barrier to be approx. 1.7 km wide and 70 km long, and incised by channels of various dimensions. Aligned more or less parallel to the modern coastline, it is interpreted as corresponding to the shoreline of a former sea-level stillstand. The barrier and lagoon system became stranded above sea level in the course of a subsequent forced regression, which also caused the incision of the river courses. Age dating of the cemented rock suggests that the fossil coastal barrier most probably formed during the prolonged Tyrrhenian (Eemian) sea-level highstand, induration taking place by carbonate cementation at the contact between freshwater and seawater (beach-rock formation). The fact that the fossil barrier is today submerged below modern sea level is explained by the sustained subsidence affecting the region.  相似文献   
8.
River flow variability is known to influence estuarine production, yet knowledge on its effect upon estuarine food webs dynamics is still scarce. Stable carbon and nitrogen isotopes were used to assess the effect of river flow in the connectivity and food web interactions between the two main fish nursery areas of the Tagus estuary. The aims of the present work were to investigate the seasonal variation in food web structure and the exchange rate of individuals of marine juvenile fish among estuarine nurseries, to compare the spring of a rainy year (2001) with that of an average year (2000), and to investigate the impact of the winter floods of 2001. A low level of connectivity was observed for the fish species that use these areas as nurseries. In low river flow conditions, two isotopically distinct food webs were established in each nursery area. These food webs were very sensitive to small variations in the freshwater input. Winter floods seem to disrupt the localized food webs that are established in low river flow periods, leading to the re-establishment of a wider food web. While in rainy years this wide food web is maintained until spring, in average years the food web undergoes fragmentation into two localized and isotopically distinctive food webs. The increase in frequency of droughts due to climate change should lower the connectivity of the estuarine fish nurseries food webs, causing habitat fragmentation and consequent loss in complexity and resilience.  相似文献   
9.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   
10.
The spectral response of atmospheric electric potential gradient gives important information about phenomena affecting this gradient at characteristic time scales ranging from years (e.g., solar modulation) to fractions of a second (e.g., turbulence). While long-term time scales have been exhaustively explored, short-term scales have received less attention. At such frequencies, space-charge transport inside the planetary boundary layer becomes a sizeable contribution to the potential gradient variability. For the first time, co-located (Évora, Portugal) measurements of boundary-layer backscatter profiles and the 100-Hz potential gradient are reported. Five campaign days are analyzed, providing evidence for a relation between high-frequency response of the potential gradient and strong dry convection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号