首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
地质学   35篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2006年   1篇
排序方式: 共有35条查询结果,搜索用时 250 毫秒
1.
This paper reports the results of our recent studies and generalizes previously known data on the geology, mineralogy, geochemistry, and genesis of the Russia’s largest Latnenskoe refractory clay deposit. It is shown that conditions of its localization were defined by regional and local factors. The regional factors controlled the distribution of the clay raw material in the region, while the local factors were responsible for the genesis and composition of refractory clays of the Latnenskoe deposit. Our studies showed that the formation of refractory clays is not only related to terrigenous but also to authigenic processes of sedimentation. The terrigenous component of clays was formed by the erosion of kaolin weathering crusts of the Voronezh anteclise crystalline basement and Paleozoic sedimentary hydromica–kaolinite rocks. Authigenic processes were significantly contributed by organic matter, which determined the environmental pH and Eh parameters. It is established that the mineral matter of clays of the deposit is represented by three morphological modifications (crystalline, amorphous, and biomorphic), which were formed subsequently and (or) simultaneously and could be transformed into each other. Application of a complex of modern precision methods allowed us to reveal a previously unknown biomorphic modification of kaolinite, the major rock-forming mineral, as well as mixed-layer kaolinite-smectite in the clays. It is shown that the distribution of major and trace elements and the sulfur isotope composition in different technological types of clay depend mainly on the facies conditions of their formation. Technological properties of clay raw material are considered.  相似文献   
2.
The results of thermobarometry yielded the PT parameters of formation and evolution of sapphirine- bearing granulites in the Anabar shield with peak values of UHT metamorphism in the range of T = 920–1000°C at P = 9–11 kbar. Isotope–geochronological data indicate a polymetamorphic evolution of these rocks. Detrital zircon cores in the center of crystals yielded ages of 3.36, 2.75, 2.6, and 2.5 Ga. Later, superimposed metamorphic transformations of the detrital zircon formed rims dated to 2.4, 2.3, 2.2, and 1.83 Ga. A potential provenance source of the detrital zircons could be hypersthene plagiogneisses and metabasics of the Daldyn Group with a premetamorphic age no less than 3.32 Ga and products of their metamorphism of about 2.7 Ga old.  相似文献   
3.
Doklady Earth Sciences - Framing of the Archaean greenstone belts of the Kursk Block (KB) of the East Sarmatia preserves rocks of the TTG association: those do not form massifs with distinct...  相似文献   
4.
Paleoproterozoic carbonaceous shales in the Tim-Yastrebovskii ancient rift, which underwent zonal metamorphism at 350–550°C, contain REE mineralization of silicates (allanite, thorite, and Ce-P huttonite) fluorcarbonates (bastnaesite and synchysite), phosphates (monazite and xenotime), and REE-bearing apatite. The reason for the wide occurrence of bastnaesite and other REE minerals is relatively high REE concentrations in the sulfide-bearing carbonaceous shales, with these elements accumulated in the organic matter in the course of diagenesis. Reaction textures with REE-bearing chlorite, bastnaesite, and allanite suggest that REE-bearing chlorite and bastnaesite provided REE for the forming of higher temperature allanite and monazite. This is corroborated by the REE patterns of the monazite, allanite, and bastnaesite, which are almost identical and are characterized by the strong predominance of LREE. The replacements of REE minerals during metamorphism at 350–550°C took place via a number successive transitions: (1) MnzAln, Chl REEBst, Chl REEAln, BstAln and (2) BstMnz and Ap LREEMnz. These replacements can be accounted for by prograde metamorphic reactions.  相似文献   
5.
6.
7.
This paper reports the results of precision structural-morphological study of kaolinite from clayey rocks taken in various areas of the Voronezh anteclise subjected to different stages of lithogenesis: primary kaolins of the weathering crust, proluvial-talus and lacustrine secondary kaolins, as well as lacustrine-swampy fireproof and deltaic-lagoonal refractory clays. The clayey material was transported over more than 300 km. The formation of the fireproof and refractory kaolin deposits in the Voronezh anteclise was related to the Devonian and Early Cretaceous stages of the geological evolution of the region. In terms of spatiotemporal and facies features, the studied genetic series of the kaolin clay deposits is unique. It was established that the sequential structural-morphological evolution o kaolinite in the considered deposits was caused by its mechanical disintegration during transport and redeposition. Interrelation between organic and mineral matters in the fireproof clays was revealed for the first time. Experimental studies of the behavior of kaolinite during sequential grinding and heating confirmed the main reasons for its natural degradation. The formation of virtually monomineral kaolin clays was provoked by the “flow-through” diagenesis, which is similar to weathering in trend. Evolution of mineral matter of the considered genetic series in kaolinite clay deposits was accompanied by the increase of δ18O values and their dispersion. Peculiarities identified in the behavior of kaolinite and related oxygen isotope characteristics of different-aged denudation and redeposition products of the Devonian weathering crust can play an indicator role in studying different stages of the lithogenesis of clayey rocks.  相似文献   
8.
K. A. Savko 《Petrology》2006,14(6):567-587
BIF with alkali amphibole at the Lebedinskoe iron deposits, the largest in Russia, were metamorphosed at 550°C and 2–3 kbar and contain ferriwinchite, riebeckite, actinolite, grunerite, and aegirine-augite. All reaction textures observed in the rocks were produced during the prograde metamorphic stage and represent the following succession of mineral replacements: GruRbk, ActWinRbk. Data obtained on the textural relations and compositional variations of Ca, Ca-Na, and Na Al-free amphiboles point to the complete miscibility in the actinolite-ferriwinchite and ferriwinchite-riebeckite isomorphic series. Riebeckite is formed in BIF during the prograde metamorphic stage, with the participation of a fluid insignificantly enriched in Na+ and at increasing oxygen fugacity. The critical factors controlling the development of alkali amphiboles and Ca-Na pyroxenes in carbonate-bearing BIF is the oxygen activity and the presence of at least low concentrations of Na+ ions in the fluid. The minerals contain Fe3+, and all reactions producing them are oxidation reactions. The origin of riebeckite late in the course of the mineral-forming process is caused by the Ca2+Mg2+ → Na+Fe3+ heterovalent isomorphic replacement in calcic and calcic-sodic amphiboles and by the oxidation of grunerite in the presence of a fluid enriched in Na ions.  相似文献   
9.
Doklady Earth Sciences - Neoarchean intraplate granitoid (2.61 Ga) and carbonatite magmatism are established in the Kursk block of Sarmatia in close spatial association. Alkaline pyroxenites,...  相似文献   
10.
The Vorontsovskii terrane of the Eastern Sarmatian orogen underwent HT/LP metamorphism at temperatures of 430–750°C and pressures of 3–5 kbar. The TIMS monazite age of this metamorphism is 2067 ± 9 Ma and corresponds to the most probable age range (2050–2080 Ma) when large volumes of mafic and granitoid intrusions were emplaced. The time spans of the magmatic activity and metamorphic event are closely similar, which suggests that the melts could have served as sources of metamorphic heat. However, geological data on the relations between the metamorphic zones and magmatic bodies (the largest of the mafic, diorite, and granitoid intrusions are hosted in zones of low-temperature metamorphism) and the occurrence of relict metamorphic mineral assemblages and crystallization foliation in metapelite xenoliths in these intrusions suggest that the intrusions were emplaced after the metamorphism. The most probable reason for the HT/LP metamorphism was an increase in the heat flux in the course of viscous deformations and folding in the warm lithosphere of the young Paleoproterozoic Vorontsovskii terrane during collision processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号